Observable-based reformulation of time-delay interferometry
Loading...
Links to Files
Author/Creator
Author/Creator ORCID
Date
2025-02-16
Type of Work
Department
Program
Citation of Original Publication
Rights
Attribution 4.0 International
Abstract
Spaceborne gravitational-wave observatories utilize a post-processing technique known as time-delay interferometry (TDI) to reduce the otherwise overwhelming laser frequency noise by around eight orders of magnitude. While, in its traditional form, TDI considers the spacecraft as point masses, recent studies have enhanced this simplified scenario by incorporating more realistic metrology chain models, which include onboard optical, electronic, and digital delays. These studies have updated the TDI algorithm to include onboard delays obtained from pre-launch and in-flight calibrations. Conversely, the processing scheme presented in this article naturally treats onboard delays as part of the TDI combinations: instead of having separate calibration stages, it directly expresses all delays appearing in the algorithm in terms of onboard measurements, especially pseudo-random-noise ranging (PRNR) measurements. The only onboard delays that need to be corrected in our processing scheme are PRNR delays in the digital domain, which are determined by commandable digital-signal-processing parameters; hence, they can be easily managed in post-processing. Furthermore, our processing scheme does not require a prior interspacecraft clock synchronization, and it automatically corrects for potential relative drifts between the clocks driving local phase measurement systems. The proposed observable-based processing scheme significantly strengthens the bond between TDI and the real metrology system.