Validation of ACE-FTS version 5.2 ozone data with ozonesonde measurements
Loading...
Links to Files
Collections
Author/Creator ORCID
Date
2024-12-12
Type of Work
Department
Program
Citation of Original Publication
Zou, Jiansheng, Kaley A. Walker, Patrick E. Sheese, Chris D. Boone, Ryan M. Stauffer, Anne M. Thompson, and David W. Tarasick. “Validation of ACE-FTS Version 5.2 Ozone Data with Ozonesonde Measurements.” Atmospheric Measurement Techniques 17, no. 23 (December 12, 2024): 6983–7005. https://doi.org/10.5194/amt-17-6983-2024.
Rights
THIS WORK WAS WRITTEN AS PART OF ONE OF THE AUTHOR'S OFFICIAL DUTIES AS AN EMPLOYEE OF THE UNITED STATES GOVERNMENT AND IS THEREFORE A WORK OF THE UNITED STATES GOVERNMENT. IN ACCORDANCE WITH 17 U.S.C. 105, NO COPYRIGHT PROTECTION IS AVAILABLE FOR SUCH WORKS UNDER U.S. LAW.
PUBLIC DOMAIN
PUBLIC DOMAIN
Subjects
Abstract
Two decades of ACE-FTS, the Atmospheric Chemistry Experiment – Fourier Transform Spectrometer, version 5.2 (v5.2) ozone data (2004–2023) are evaluated with ozonesonde data from across the globe. The biases between the ACE-FTS and ozonesonde measurements are first estimated by analyzing coincident data pairs. A second approach is taken for the validation by comparing the ACE-FTS and ozonesonde monthly mean time series, with the former generated by sampling the ACE-FTS data within latitude/longitude boxes (i.e., ± 5°/± 30°) surrounding the stations and calculating the monthly averages. The biases, correlations, variation patterns, and the mean states of the two time series are compared. The biases estimated in this way exhibit more consistent and smoother features than using the coincident pair method. The ACE-FTS and ozonesonde monthly mean time series are highly correlated and exhibit similar variation patterns in the lower stratosphere at all latitudes. The ACE-FTS instrument drifts for each station are assessed in terms of the long-term linear trends relative to ozonesondes, which, although highly stable, may have their own minor changes with time. The ACE-FTS ozone profiles exhibit in general high biases in the stratosphere for altitudes above ∼ 20 km, increasing with altitude up to ∼ 10 % at around 30 km. For altitudes between 20 km and the tropopause, biases of up to ± 10 % are found, depending on altitude and latitude with the largest biases found in the tropics and southern mid-latitudes. The ACE-FTS instrument drifts are generally non-significant overall in the stratosphere with high variation between the stations. Averaging the individual station instrument drifts within several latitude bands results in small non-significant drifts of within ± 1 %–2 % per decade in the northern mid-latitudes to high latitudes and the southern high latitudes. It also results in a positive but non-significant drift of up to 5 % per decade in the tropics and southern mid-latitudes, with overall uncertainties in this region ranging up to 5 %–10 % per decade (2σ level) in the low stratosphere. As part of this assessment, an analysis of ozonesonde measurement stability using ACE-FTS as a transfer standard is conducted and finds small step changes in ozonesonde response at some stations. These results are in general agreement with recent findings using other satellite data sources.