Interactive Knowledge Base Population

dc.contributor.authorWolfe, Travis
dc.contributor.authorDredze, Mark
dc.contributor.authorMayfield, James
dc.contributor.authorMcNamee, Paul
dc.date.accessioned2018-11-01T16:16:37Z
dc.date.available2018-11-01T16:16:37Z
dc.date.issued2015-05-15
dc.description.abstractMost work on building knowledge bases has focused on collecting entities and facts from as large a collection of documents as possible. We argue for and describe a new paradigm where the focus is on a high-recall extraction over a small collection of documents under the supervision of a human expert, that we call Interactive Knowledge Base Population (IKBP).en_US
dc.description.urihttps://ebiquity.umbc.edu/paper/html/id/702/Interactive-Knowledge-Base-Populationen_US
dc.format.extent6 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.identifierdoi:10.13016/M2JH3D62J
dc.identifier.urihttp://hdl.handle.net/11603/11824
dc.language.isoen_USen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectnatural language processingen_US
dc.subjectknowledge baseen_US
dc.subjectinformation extractionen_US
dc.subjectUMBC Ebiquity Research Groupen_US
dc.titleInteractive Knowledge Base Populationen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
756.pd.pdf
Size:
52.24 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: