A note on the distribution of the extreme degrees of a random graph via the Stein-Chen method

dc.contributor.authorMalinovsky, Yaakov
dc.date.accessioned2022-05-31T21:46:07Z
dc.date.available2022-05-31T21:46:07Z
dc.date.issued2024-07-02
dc.description.abstractWe offer an alternative proof, using the Stein-Chen method, of Bollobás' theorem concerning the distribution of the extreme degrees of a random graph. The same method also applies in a more general setting where the probability of every pair of vertices being connected by edges depends on the number of vertices.en
dc.description.sponsorshipThis research was supported by grant no 2020063 from the United States-Israel Binational Science Foundation (BSF).en
dc.description.urihttps://link.springer.com/article/10.1007/s11009-024-10091-0en
dc.format.extent7 pagesen
dc.genrejournal articlesen
dc.identifierdoi:10.13016/m2p1wf-31kj
dc.identifier.citationMalinovsky, Yaakov. “A Note on the Distribution of the Extreme Degrees of a Random Graph via the Stein-Chen Method.” Methodology and Computing in Applied Probability 26, no. 3 (July 2, 2024): 22. https://doi.org/10.1007/s11009-024-10091-0.
dc.identifier.urihttp://hdl.handle.net/11603/24771
dc.identifier.urihttps://doi.org/10.1007/s11009-024-10091-0
dc.language.isoenen
dc.publisherSpringer Nature
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleA note on the distribution of the extreme degrees of a random graph via the Stein-Chen methoden
dc.typeTexten
dcterms.creatorhttps://orcid.org/0000-0003-2888-674Xen

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11009-024-10091-0.pdf
Size:
387.86 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: