A note on the distribution of the extreme degrees of a random graph via the Stein-Chen method

dc.contributor.authorMalinovsky, Yaakov
dc.date.accessioned2022-05-31T21:46:07Z
dc.date.available2022-05-31T21:46:07Z
dc.date.issued2024-07-02
dc.description.abstractWe offer an alternative proof, using the Stein-Chen method, of Bollobás' theorem concerning the distribution of the extreme degrees of a random graph. The same method also applies in a more general setting where the probability of every pair of vertices being connected by edges depends on the number of vertices.en_US
dc.description.sponsorshipThis research was supported by grant no 2020063 from the United States-Israel Binational Science Foundation (BSF).en_US
dc.description.urihttps://link.springer.com/article/10.1007/s11009-024-10091-0en_US
dc.format.extent7 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2p1wf-31kj
dc.identifier.citationMalinovsky, Yaakov. “A Note on the Distribution of the Extreme Degrees of a Random Graph via the Stein-Chen Method.” Methodology and Computing in Applied Probability 26, no. 3 (July 2, 2024): 22. https://doi.org/10.1007/s11009-024-10091-0.
dc.identifier.urihttp://hdl.handle.net/11603/24771
dc.identifier.urihttps://doi.org/10.1007/s11009-024-10091-0
dc.language.isoen_USen_US
dc.publisherSpringer Nature
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsAttribution 4.0 Internationalen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleA note on the distribution of the extreme degrees of a random graph via the Stein-Chen methoden_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0003-2888-674Xen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11009-024-10091-0.pdf
Size:
387.86 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: