Sources of Formaldehyde in U.S. Oil and Gas Production Regions
Loading...
Author/Creator ORCID
Date
2023-11-13
Type of Work
Department
Program
Citation of Original Publication
Dix, Barbara, Meng Li, Esther Roosenbrand, Colby Francoeur, Steven S. Brown, Jessica B. Gilman, Thomas F. Hanisco, et al. “Sources of Formaldehyde in U.S. Oil and Gas Production Regions.” ACS Earth and Space Chemistry, November 13, 2023. https://doi.org/10.1021/acsearthspacechem.3c00203.
Rights
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain
Public Domain
Subjects
Abstract
We analyzed observational and model data to study the sources of formaldehyde over oil and gas production regions and to investigate how these observations may be used to constrain oil and gas volatile organic compound (VOC) emissions. The analysis of aircraft and satellite data consistently found that formaldehyde over oil and gas production regions during spring and summer is mostly formed by the photooxidation of precursor VOCs. Formaldehyde columns over the Permian Basin, one of the largest oil- and gas-producing regions in the United States, are correlated with the production locations. Formaldehyde simulations by the atmospheric chemistry and transport model WRF-Chem, which included oil and gas NOx and VOC emissions from the fuel-based oil and gas inventory, were in very good agreement with TROPOMI satellite measurements. Sensitivity studies illustrated that VOCs released from oil and gas activities are important precursors to formaldehyde, but other sources of VOCs contribute as well and that the formation of secondary formaldehyde is highly sensitive to NOₓ. We also investigated the ability of the chemical mechanism used in WRF-Chem to represent formaldehyde formation from oil and gas hydrocarbons by comparing against the Master Chemical Mechanism. Further, our work provides estimates of primary formaldehyde emissions from oil and gas production activities, with per basin averages ranging from 0.07 to 2.2 kg h⁻¹ in 2018. A separate estimate for natural gas flaring found that flaring emissions could contribute 5 to 12% to the total primary formaldehyde emissions for the Permian Basin in 2018.