Reconstructing Emission from Pre-reionization Sources with Cosmic Infrared Background Fluctuation Measurements by the JWST

dc.contributor.authorKashlinsky, A.
dc.contributor.authorMather, J. C.
dc.contributor.authorHelgason, K.
dc.contributor.authorArendt, Richard
dc.contributor.authorBromm, V.
dc.contributor.authorMoseley, S. H.
dc.date.accessioned2022-06-08T20:24:46Z
dc.date.available2022-06-08T20:24:46Z
dc.date.issued2015-05-06
dc.description.abstractWe present new methodology to use cosmic infrared background (CIB) fluctuations to probe sources at $10\lesssim z\lesssim 30$ from a James Webb Space Telescope (JWST)/NIRCam configuration that will isolate known galaxies to 28 AB mag at 0.5–5 μm. At present significant mutually consistent source-subtracted CIB fluctuations have been identified in the Spitzer and AKARI data at ∼2–5 μm, but we demonstrate internal inconsistencies at shorter wavelengths in the recent CIBER data. We evaluate CIB contributions from remaining galaxies and show that the bulk of the high-z sources will be in the confusion noise of the NIRCam beam, requiring CIB studies. The accurate measurement of the angular spectrum of the fluctuations and probing the dependence of its clustering component on the remaining shot noise power would discriminate between the various currently proposed models for their origin and probe the flux distribution of its sources. We show that the contribution to CIB fluctuations from remaining galaxies is large at visible wavelengths for the current instruments precluding probing the putative Lyman-break of the CIB fluctuations. We demonstrate that with the proposed JWST configuration such measurements will enable probing the Lyman-break. We develop a Lyman-break tomography method to use the NIRCam wavelength coverage to identify or constrain, via the adjacent two-band subtraction, the history of emissions over $10\lesssim z\lesssim 30$ as the universe comes out of the "Dark Ages." We apply the proposed tomography to the current Spitzer/IRAC measurements at 3.6 and 4.5 μm, to find that it already leads to interestingly low upper limit on emissions at $z\gtrsim 30$.en_US
dc.description.urihttps://iopscience.iop.org/article/10.1088/0004-637X/804/2/99en_US
dc.format.extent26 pagesen_US
dc.genrejournal articlesen_US
dc.identifierdoi:10.13016/m2vzml-6lyq
dc.identifier.citationKashlinsky, A., Mather, J. C., Helgason, K., Arendt, R. G., Bromm, V., and Moseley, S. H., “Reconstructing Emission from Pre-reionization Sources with Cosmic Infrared Background Fluctuation Measurements by the JWST”, The Astrophysical Journal, vol. 804, no. 2, 2015. doi:10.1088/0004-637X/804/2/99.en_US
dc.identifier.urihttps://doi.org/10.1088/0004-637X/804/2/99
dc.identifier.urihttp://hdl.handle.net/11603/24863
dc.language.isoen_USen_US
dc.publisherIOP Scienceen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Center for Space Sciences and Technology
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis is a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.en_US
dc.rightsPublic Domain Mark 1.0*
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/*
dc.titleReconstructing Emission from Pre-reionization Sources with Cosmic Infrared Background Fluctuation Measurements by the JWSTen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0001-8403-8548en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kashlinsky_2015_ApJ_804_99.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: