UMBC Center for Real-time Distributed Sensing and Autonomy
Permanent URI for this collectionhttp://hdl.handle.net/11603/23124
The vision of this center is to advance AI-based autonomy in order to deliver safe, effective, and resilient new capabilities across a variety of complex mission types, including search-and-rescue, persistent surveillance, managing, adapting and optimizing smart, connected robots and machinery, and augmenting humans in performing complex analytical and decision-making tasks. These systems are continually getting better, but to achieve their potential, there are still numerous developments required to improve their capability, command and control, interoperability, resiliency and trustworthiness.
Focus Areas: Networking, Sensing and IoT for the Battlefield, IoT for the Battlefield. Adaptive Machine/Deep Learning, Individual and Collective Health Assessment, Adaptive Cybersecurity, Cross Domain Machine Learning with Few Labels, AI/ML on Edg, Predictive Maintenance
Browse
Recent Submissions
Item Integrating Frequency-Domain Representations with Low-Rank Adaptation in Vision-Language Models(2025-03-08) Khan, Md Azim; Gangopadhyay, Aryya; Wang, Jianwu; Erbacher, Robert F.Situational awareness applications rely heavily on real-time processing of visual and textual data to provide actionable insights. Vision language models (VLMs) have become essential tools for interpreting complex environments by connecting visual inputs with natural language descriptions. However, these models often face computational challenges, especially when required to perform efficiently in real environments. This research presents a novel vision language model (VLM) framework that leverages frequency domain transformations and low-rank adaptation (LoRA) to enhance feature extraction, scalability, and efficiency. Unlike traditional VLMs, which rely solely on spatial-domain representations, our approach incorporates Discrete Fourier Transform (DFT) based low-rank features while retaining pretrained spatial weights, enabling robust performance in noisy or low visibility scenarios. We evaluated the proposed model on caption generation and Visual Question Answering (VQA) tasks using benchmark datasets with varying levels of Gaussian noise. Quantitative results demonstrate that our model achieves evaluation metrics comparable to state-of-the-art VLMs, such as CLIP ViT-L/14 and SigLIP. Qualitative analysis further reveals that our model provides more detailed and contextually relevant responses, particularly for real-world images captured by a RealSense camera mounted on an Unmanned Ground Vehicle (UGV).Item Impact of increased anthropogenic Amazon wildfires on Antarctic Sea ice melt via albedo reduction(Cambridge University Press, 2025-03-10) Chakraborty, Sudip; Devnath, Maloy Kumar; Jabeli, Atefeh; Kulkarni, Chhaya; Boteju, Gehan; Wang, Jianwu; Janeja, VandanaThis study shows the impact of black carbon (BC) aerosol atmospheric rivers (AAR) on the Antarctic Sea ice retreat. We detect that a higher number of BC AARs arrived in the Antarctic region due to increased anthropogenic wildfire activities in 2019 in the Amazon compared to 2018. Our analyses suggest that the BC AARs led to a reduction in the sea ice albedo, increased the amount of sunlight absorbed at the surface, and a significant reduction of sea ice over the Weddell, Ross Sea (Ross), and Indian Ocean (IO) regions in 2019. The Weddell region experienced the largest amount of sea ice retreat ( km2) during the presence of BC AARs as compared to km2 during non-BC days. We used a suite of data science techniques, including random forest, elastic net regression, matrix profile, canonical correlations, and causal discovery analyses, to discover the effects and validate them. Random forest, elastic net regression, and causal discovery analyses show that the shortwave upward radiative flux or the reflected sunlight, temperature, and longwave upward energy from the earth are the most important features that affect sea ice extent. Canonical correlation analysis confirms that aerosol optical depth is negatively correlated with albedo, positively correlated with shortwave energy absorbed at the surface, and negatively correlated with Sea Ice Extent. The relationship is stronger in 2019 than in 2018. This study also employs the matrix profile and convolution operation of the Convolution Neural Network (CNN) to detect anomalous events in sea ice loss. These methods show that a higher amount of anomalous melting events were detected over the Weddell and Ross regions.Item Correlation to Causation: A Causal Deep Learning Framework for Arctic Sea Ice Prediction(2025-03-03) Hossain, Emam; Ferdous, Muhammad Hasan; Wang, Jianwu; Subramanian, Aneesh; Gani, Md OsmanTraditional machine learning and deep learning techniques rely on correlation-based learning, often failing to distinguish spurious associations from true causal relationships, which limits robustness, interpretability, and generalizability. To address these challenges, we propose a causality-driven deep learning framework that integrates Multivariate Granger Causality (MVGC) and PCMCI+ causal discovery algorithms with a hybrid deep learning architecture. Using 43 years (1979-2021) of daily and monthly Arctic Sea Ice Extent (SIE) and ocean-atmospheric datasets, our approach identifies causally significant factors, prioritizes features with direct influence, reduces feature overhead, and improves computational efficiency. Experiments demonstrate that integrating causal features enhances the deep learning model's predictive accuracy and interpretability across multiple lead times. Beyond SIE prediction, the proposed framework offers a scalable solution for dynamic, high-dimensional systems, advancing both theoretical understanding and practical applications in predictive modeling.Item CAM-Seg: A Continuous-valued Embedding Approach for Semantic Image Generation(2025-03-19) Ahmed, Masud; Hasan, Zahid; Haque, Syed Arefinul; Faridee, Abu Zaher Md; Purushotham, Sanjay; You, Suya; Roy, NirmalyaTraditional transformer-based semantic segmentation relies on quantized embeddings. However, our analysis reveals that autoencoder accuracy on segmentation mask using quantized embeddings (e.g. VQ-VAE) is 8% lower than continuous-valued embeddings (e.g. KL-VAE). Motivated by this, we propose a continuous-valued embedding framework for semantic segmentation. By reformulating semantic mask generation as a continuous image-to-embedding diffusion process, our approach eliminates the need for discrete latent representations while preserving fine-grained spatial and semantic details. Our key contribution includes a diffusion-guided autoregressive transformer that learns a continuous semantic embedding space by modeling long-range dependencies in image features. Our framework contains a unified architecture combining a VAE encoder for continuous feature extraction, a diffusion-guided transformer for conditioned embedding generation, and a VAE decoder for semantic mask reconstruction. Our setting facilitates zero-shot domain adaptation capabilities enabled by the continuity of the embedding space. Experiments across diverse datasets (e.g., Cityscapes and domain-shifted variants) demonstrate state-of-the-art robustness to distribution shifts, including adverse weather (e.g., fog, snow) and viewpoint variations. Our model also exhibits strong noise resilience, achieving robust performance (≈ 95% AP compared to baseline) under gaussian noise, moderate motion blur, and moderate brightness/contrast variations, while experiencing only a moderate impact (≈ 90% AP compared to baseline) from 50% salt and pepper noise, saturation and hue shifts. Code available: this https URLItem VIVAR: learning view-invariant embedding for video action recognition(SPIE, 2025-03-10) Hasan, Zahid; Ahmed, Masud; Faridee, Abu Zaher Md; Purushotham, Sanjay; Lee, Hyungtae; Kwon, Heesung; Roy, NirmalyaDeep learning has achieved state-of-the-art video action recognition (VAR) performance by comprehending action-related features from raw video. However, these models often learn to jointly encode auxiliary view (viewpoints and sensor properties) information with primary action features, leading to performance degradation under novel views and security concerns by revealing sensor types and locations. Here, we systematically study these shortcomings of VAR models and develop a novel approach, VIVAR, to learn view-invariant spatiotemporal action features removing view information. In particular, we leverage contrastive learning to separate actions and jointly optimize adversarial loss that aligns view distributions to remove auxiliary view information in the deep embedding space using the unlabeled synchronous multiview (MV) video to learn view-invariant VAR system. We evaluate VIVAR using our in-house large-scale time synchronous MV video dataset containing 10 actions with three angular viewpoints and sensors in diverse environments. VIVAR successfully captures view-invariant action features, improves inter and intra-action clusters’ quality, and outperforms SoTA models consistently with 8% more accuracy. We additionally perform extensive studies with our datasets, model architectures, multiple contrastive learning, and view distribution alignments to provide VIVAR insights. We open-source our code and dataset to facilitate further research in view-invariant systems.Item DACC-Comm: DNN-Powered Adaptive Compression and Flow Control for Robust Communication in Network-Constrained Environment(IEEE, 2025-01) Dey, Emon; Ravi, Anuradha; Lewis, Jared; Kumar, Vinay Krishna; Freeman, Jade; Gregory, Timothy; Suri, Niranjan; Busart, Carl; Roy, NirmalyaRobust communication is vital for multi-agent robotic systems involving heterogeneous agents like Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) operating in dynamic and contested environments. These agents often communicate to collaboratively execute critical tasks for perception awareness and are faced with different communication challenges: (a) The disparity in velocity between these agents results in rapidly changing distances, in turn affecting the physical channel parameters such as Received Signal Strength Indicator (RSSI), data rate (applicable for certain networks) and most importantly "reliable data transfer", (b) As these devices work in outdoor and network-deprived environments, they tend to use proprietary network technologies with low frequencies to communicate long range, which tremendously reduces the available bandwidth. This poses a challenge when sending large amounts of data for time-critical applications. To mitigate the above challenges, we propose DACC-Comm, an adaptive flow control and compression sensing framework to dynamically adjust the receiver window size and selectively sample the image pixels based on various network parameters such as latency, data rate, RSSI, and physiological factors such as the variation in movement speed between devices. DACC-Comm employs state-of-the-art DNN (TABNET) to optimize the payload and reduce the retransmissions in the network, in turn maintaining low latency. The multi-head transformer-based prediction model takes the network parameters and physiological factors as input and outputs (a) an optimal receiver window size for TCP, determining how many bytes can be sent without the sender waiting for an acknowledgment (ACK) from the receiver, (b) a compression ratio to sample a subset of pixels from an image. We propose a novel sampling strategy to select the image pixels, which are then encoded using a feature extractor. To optimize the amount of data sent across the network, the extracted feature is further quantized to INT8 with the help of post-training quantization. We evaluate DACC-Comm on an experimental testbed comprising Jackal and ROSMaster2 UGV devices that communicate image features using a proprietary radio (Doodle) in 915-MHz frequency. We demonstrate that DACC-Comm improves the retransmission rate by ≈17% and reduces the overall latency by ≈12%. The novel compression sensing strategy reduces the overall payload by ≈56%.Item Accurate and Interpretable Radar Quantitative Precipitation Estimation with Symbolic Regression(IEEE, 2025-01-16) Zhang, Olivia; Grissom, Brianna; Pulido, Julian; Munoz-Ordaz, Kenia; He, Jonathan; Cham, Mostafa; Jing, Haotong; Qian, Weikang; Wen, Yixin; Wang, JianwuAccurate quantitative precipitation estimation (QPE) is essential for managing water resources, monitoring flash floods, creating hydrological models, and more. Traditional methods of obtaining precipitation data from rain gauges and radars have limitations such as sparse coverage and inaccurate estimates for different precipitation types and intensities. Symbolic regression, a machine learning method that generates mathematical equations fitting the data, presents a unique approach to estimating precipitation that is both accurate and interpretable. Using WSR-88D dual-polarimetric radar data from Oklahoma and Florida over three dates, we tested symbolic regression models involving genetic programming and deep learning, symbolic regression on separate clusters of the data, and the incorporation of knowledge-based loss terms into the loss function. We found that symbolic regression is both accurate in estimating rainfall and interpretable through learned equations. Accuracy and simplicity of the learned equations can be slightly improved by clustering the data based on select radar variables and by adjusting the loss function with knowledge-based loss terms. This research provides insights into improving QPE accuracy through interpretable symbolic regression methodsItem Unsupervised Domain Adaptation for Action Recognition via Self-Ensembling and Conditional Embedding Alignment(2024-10-23) Ghosh, Indrajeet; Chugh, Garvit; Faridee, Abu Zaher Md; Roy, NirmalyaRecent advancements in deep learning-based wearable human action recognition (wHAR) have improved the capture and classification of complex motions, but adoption remains limited due to the lack of expert annotations and domain discrepancies from user variations. Limited annotations hinder the model's ability to generalize to out-of-distribution samples. While data augmentation can improve generalizability, unsupervised augmentation techniques must be applied carefully to avoid introducing noise. Unsupervised domain adaptation (UDA) addresses domain discrepancies by aligning conditional distributions with labeled target samples, but vanilla pseudo-labeling can lead to error propagation. To address these challenges, we propose μDAR, a novel joint optimization architecture comprised of three functions: (i) consistency regularizer between augmented samples to improve model classification generalizability, (ii) temporal ensemble for robust pseudo-label generation and (iii) conditional distribution alignment to improve domain generalizability. The temporal ensemble works by aggregating predictions from past epochs to smooth out noisy pseudo-label predictions, which are then used in the conditional distribution alignment module to minimize kernel-based class-wise conditional maximum mean discrepancy (kCMMD) between the source and target feature space to learn a domain invariant embedding. The consistency-regularized augmentations ensure that multiple augmentations of the same sample share the same labels; this results in (a) strong generalization with limited source domain samples and (b) consistent pseudo-label generation in target samples. The novel integration of these three modules in μDAR results in a range of ≈4-12% average macro-F1 score improvement over six state-of-the-art UDA methods in four benchmark wHAR datasetsItem SERN: Simulation-Enhanced Realistic Navigation for Multi-Agent Robotic Systems in Contested Environments(2024-10-22) Hossain, Jumman; Dey, Emon; Chugh, Snehalraj; Ahmed, Masud; Anwar,Mohammad Saeid; Faridee, Abu Zaher Md; Hoppes, Jason; Trout, Theron; Basak, Anjon; Chowdhury, Rafidh; Mistry, Rishabh; Kim, Hyun; Freeman, Jade; Suri, Niranjan; Raglin, Adrienne; Busart, Carl; Gregory, Timothy; Ravi, Anuradha; Roy, NirmalyaThe increasing deployment of autonomous systems in complex environments necessitates efficient communication and task completion among multiple agents. This paper presents SERN (Simulation-Enhanced Realistic Navigation), a novel framework integrating virtual and physical environments for real-time collaborative decision-making in multi-robot systems. SERN addresses key challenges in asset deployment and coordination through a bi-directional communication framework using the AuroraXR ROS Bridge. Our approach advances the SOTA through accurate real-world representation in virtual environments using Unity high-fidelity simulator; synchronization of physical and virtual robot movements; efficient ROS data distribution between remote locations; and integration of SOTA semantic segmentation for enhanced environmental perception. Our evaluations show a 15% to 24% improvement in latency and up to a 15% increase in processing efficiency compared to traditional ROS setups. Real-world and virtual simulation experiments with multiple robots demonstrate synchronization accuracy, achieving less than 5 cm positional error and under 2-degree rotational error. These results highlight SERN's potential to enhance situational awareness and multi-agent coordination in diverse, contested environments.Item Tutorial on Causal Inference with Spatiotemporal Data(ACM, 2024-11-04) Ali, Sahara; Wang, JianwuSpatiotemporal data, which captures how variables evolve across space and time, is ubiquitous in fields such as environmental science, epidemiology, and urban planning. However, identifying causal relationships in these datasets is challenging due to the presence of spatial dependencies, temporal autocorrelation, and confounding factors. This tutorial provides a comprehensive introduction to spatiotemporal causal inference, offering both theoretical foundations and practical guidance for researchers and practitioners. We explore key concepts such as causal inference frameworks, the impact of confounding in spatiotemporal settings, and the challenges posed by spatial and temporal dependencies. The paper covers synthetic spatiotemporal benchmark data generation, widely used spatiotemporal causal inference techniques, including regression-based, propensity score-based, and deep learning-based methods, and demonstrates their application using synthetic datasets. Through step-by-step examples, readers will gain a clear understanding of how to address common challenges and apply causal inference techniques to spatiotemporal data. This tutorial serves as a valuable resource for those looking to improve the rigor and reliability of their causal analyses in spatiotemporal contexts.Item Accelerating Subglacial Bed Topography Prediction in Greenland: A Performance Evaluation of Spark-Optimized Machine Learning Models(2024) Cham, Mostafa; Tabassum, Tartela; Shakeri, Ehsan; Wang, JianwuItem Deep Learning-Based Joint Channel Equalization and Symbol Detection for Air-Water Optoacoustic Communications(IEEE, 2024-10-14) Mahmud, Muntasir; Younis, Mohamed; Ahmed, Masud; Choa, Fow-SenThe optoacoustic effect is triggered by directing an optical signal in the air (using laser) to the surface of water, leading to the generation of a corresponding acoustic signal inside the water. Careful modulation of the laser signal would enable an innovative method for direct communication in air-water cross-medium scenarios experienced in many civil and military applications. In order to achieve a high data rate, a multilevel amplitude modulation scheme can be used to generate different acoustic signals to transmit multiple symbols. However, accurately demodulating these acoustic signals can be challenging due to multipath propagation within the harsh underwater environment, inducing inter-symbol interferences. This paper proposes a deep learning-based demodulation technique that uses a U-Net for signal equalization and a Residual Neural Network for symbol detection. In addition, fine-tuning at the receiver side is also considered to increase the demodulation robustness. The proposed deep learning model has been trained with our laboratory constructed dataset containing eight levels of optoacoustic signals captured from three different underwater positions. The model is validated using two datasets containing severe interference due to multipath-generated echoes and reverberations. The results show that our demodulation model achieves 96.6% and 91.7% accuracy for the two datasets, respectively, which significantly surpasses the 72.9% and 65.30% accuracy achieved by the conventional peak detection-based technique.Item Let Students Take the Wheel: Introducing Post-Quantum Cryptography with Active Learning(2024-10-17) Jamshidi, Ainaz; Kaur, Khushdeep; Gangopadhyay, Aryya; Zhang, LeiQuantum computing presents a double-edged sword: while it has the potential to revolutionize fields such as artificial intelligence, optimization, healthcare, and so on, it simultaneously poses a threat to current cryptographic systems, such as public-key encryption. To address this threat, post-quantum cryptography (PQC) has been identified as the solution to secure existing software systems, promoting a national initiative to prepare the next generation with the necessary knowledge and skills. However, PQC is an emerging interdisciplinary topic, presenting significant challenges for educators and learners. This research proposes a novel active learning approach and assesses the best practices for teaching PQC to undergraduate and graduate students in the discipline of information systems. Our contributions are two-fold. First, we compare two instructional methods: 1) traditional faculty-led lectures and 2) student-led seminars, both integrated with active learning techniques such as hands-on coding exercises and Kahoot games. The effectiveness of these methods is evaluated through student assessments and surveys. Second, we have published our lecture video, slides, and findings so that other researchers and educators can reuse the courseware and materials to develop their own PQC learning modules. We employ statistical analysis (e.g., t-test and chi-square test) to compare the learning outcomes and students' feedback between the two learning methods in each course. Our findings suggest that student-led seminars significantly enhance learning outcomes, particularly for graduate students, where a notable improvement in comprehension and engagement is observed. Moving forward, we aim to scale these modules to diverse educational contexts and explore additional active learning and experiential learning strategies for teaching complex concepts of quantum information science.Item Investigating Causal Cues: Strengthening Spoofed Audio Detection with Human-Discernible Linguistic Features(2024-09-09) Khanjani, Zahra; Ale, Tolulope; Wang, Jianwu; Davis, Lavon; Mallinson, Christine; Janeja, VandanaSeveral types of spoofed audio, such as mimicry, replay attacks, and deepfakes, have created societal challenges to information integrity. Recently, researchers have worked with sociolinguistics experts to label spoofed audio samples with Expert Defined Linguistic Features (EDLFs) that can be discerned by the human ear: pitch, pause, word-initial and word-final release bursts of consonant stops, audible intake or outtake of breath, and overall audio quality. It is established that there is an improvement in several deepfake detection algorithms when they augmented the traditional and common features of audio data with these EDLFs. In this paper, using a hybrid dataset comprised of multiple types of spoofed audio augmented with sociolinguistic annotations, we investigate causal discovery and inferences between the discernible linguistic features and the label in the audio clips, comparing the findings of the causal models with the expert ground truth validation labeling process. Our findings suggest that the causal models indicate the utility of incorporating linguistic features to help discern spoofed audio, as well as the overall need and opportunity to incorporate human knowledge into models and techniques for strengthening AI models. The causal discovery and inference can be used as a foundation of training humans to discern spoofed audio as well as automating EDLFs labeling for the purpose of performance improvement of the common AI-based spoofed audio detectors.Item Atmospheric Gravity Wave Detection Using Transfer Learning Techniques(IEEE, 2022-12) González, Jorge López; Chapman, Theodore; Chen, Kathryn; Nguyen, Hannah; Chambers, Logan; Mostafa, Seraj Al Mahmud; Wang, Jianwu; Purushotham, Sanjay; Wang, Chenxi; Yue, JiaAtmospheric gravity waves are produced when gravity attempts to restore disturbances through stable layers in the atmosphere. They have a visible effect on many atmospheric phenomena such as global circulation and air turbulence. Despite their importance, however, little research has been conducted on how to detect gravity waves using machine learning algorithms. We faced two major challenges in our research: our raw data had a lot of noise and the labeled dataset was extremely small. In this study, we explored various methods of preprocessing and transfer learning in order to address those challenges. We pre-trained an autoencoder on unlabeled data before training it to classify labeled data. We also created a custom CNN by combining certain pre-trained layers from the InceptionV3 Model trained on ImageNet with custom layers and a custom learning rate scheduler. Experiments show that our best model outperformed the best performing baseline model by 6.36% in terms of test accuracy.Item Integrating Fourier Transform and Residual Learning for Arctic Sea Ice Forecasting(IEEE, 2023-12) Lapp, Louis; Ali, Sahara; Wang, JianwuArctic sea ice plays integral roles in both polar and global environmental systems, notably ecosystems, commu-nities, and economies. As sea ice continues to decline due to climate change, it has become imperative to accurately predict the future of sea ice extent (SIE). Using datasets of Arctic meteorological and SIE variables spanning 1979 to 2021, we propose architectures capable of processing multivariate time series and spatiotemporal data. Our proposed framework consists of ensembled stacked Fourier Transform signals (FFTstack) and Gradient Boosting models. In FFTstack, grid search iteratively detects the optimal combination of representative FFT signals, a process that improves upon current FFT implementations and deseasonalizers. An optimized Gradient Boosting Regressor is then trained on the residual of the FFTstack output. Through ex-periment, we found that the models trained on both multivariate and spatiotemporal time series data performed either similar to or better than models in existing research. In addition, we found that integration of FFTstack improves the performance of current multivariate time series deep learning models. We conclude that the high flexibility and performance of this methodology have promising applications in guiding future adaptation, resilience, and mitigation efforts in response to Arctic sea ice retreat.Item Hybrid Ensemble Deep Graph Temporal Clustering for Spatiotemporal Data(2024-09-19) Nji, Francis Ndikum; Faruque, Omar; Cham, Mostafa; Janeja, Vandana; Wang, JianwuClassifying subsets based on spatial and temporal features is crucial to the analysis of spatiotemporal data given the inherent spatial and temporal variability. Since no single clustering algorithm ensures optimal results, researchers have increasingly explored the effectiveness of ensemble approaches. Ensemble clustering has attracted much attention due to increased diversity, better generalization, and overall improved clustering performance. While ensemble clustering may yield promising results on simple datasets, it has not been fully explored on complex multivariate spatiotemporal data. For our contribution to this field, we propose a novel hybrid ensemble deep graph temporal clustering (HEDGTC) method for multivariate spatiotemporal data. HEDGTC integrates homogeneous and heterogeneous ensemble methods and adopts a dual consensus approach to address noise and misclassification from traditional clustering. It further applies a graph attention autoencoder network to improve clustering performance and stability. When evaluated on three real-world multivariate spatiotemporal data, HEDGTC outperforms state-of-the-art ensemble clustering models by showing improved performance and stability with consistent results. This indicates that HEDGTC can effectively capture implicit temporal patterns in complex spatiotemporal data.Item Flood-ResNet50: Optimized Deep Learning Model for Efficient Flood Detection on Edge Device(IEEE, 2024-03-19) Khan, Md Azim; Ahmed, Nadeem; Padela, Joyce; Raza, Muhammad Shehrose; Gangopadhyay, Aryya; Wang, Jianwu; Foulds, James; Busart, Carl; Erbacher, Robert F.Floods are highly destructive natural disasters that result in significant economic losses and endanger human and wildlife lives. Efficiently monitoring Flooded areas through the utilization of deep learning models can contribute to mitigating these risks. This study focuses on the deployment of deep learning models specifically designed for classifying flooded and non-flooded in UAV images. In consideration of computational costs, we propose modified version of ResNet50 called Flood-ResNet50. By incorporating additional layers and leveraging transfer learning techniques, Flood-ResNet50 achieves comparable performance to larger models like VGG16/19, AlexNet, DenseNet161, EfficientNetB7, Swin(small), and vision transformer. Experimental results demonstrate that the proposed modification of ResNet50, incorporating additional layers, achieves a classification accuracy of 96.43%, F1 score of 86.36%, Recall of 81.11%, Precision of 92.41 %, model size 98MB and FLOPs 4.3 billions for the FloodNet dataset. When deployed on edge devices such as the Jetson Nano, our model demonstrates faster inference speed (820 ms), higher throughput (39.02 fps), and lower average power consumption (6.9 W) compared to larger ResNet101 and ResNet152 models.Item Variability of Eastern North Atlantic Summertime Marine Boundary Layer Clouds and Aerosols Across Different Synoptic Regimes Identified with Multiple Conditions(2024-08-22) Zheng, Xue; Qiu, Shaoyue; Zhang, Damao; Adebiyi, Adeyemi A.; Zheng, Xiaojian; Faruque, Omar; Tao, Cheng; Wang, JianwuThis study estimates the meteorological covariations of aerosol and marine boundary layer (MBL) cloud properties in the Eastern North Atlantic (ENA) region, characterized by diverse synoptic conditions. Using a deep-learning-based clustering model with mid-level and surface daily meteorological data, we identify seven distinct synoptic regimes during the summer from 2016 to 2021. Our analysis, incorporating reanalysis data and satellite retrievals, shows that surface aerosols and MBL clouds exhibit clear regime-dependent characteristics, while lower tropospheric aerosols do not. This discrepancy likely arises synoptic regimes determined by daily large-scale conditions may overlook air mass histories that predominantly dictate lower tropospheric aerosol conditions. Focusing on three regimes dominated by northerly winds, we analyze the Atmospheric Radiation Measurement Program (ARM) ENA observations on Graciosa Island in the Azores. In the subtropical anticyclone regime, fewer cumulus clouds and more single-layer stratocumulus clouds with light drizzles are observed, along with the highest cloud droplet number concentration (Nd), surface Cloud Condensation Nuclei (CCN) and surface aerosol levels. The post-trough regime features more broken or multi-layer stratocumulus clouds with slightly higher surface rain rate, and lower Nd and surface CCN levels. The weak trough regime is characterized by the deepest MBL clouds, primarily cumulus and broken stratocumulus clouds, with the strongest surface rain rate and the lowest Nd, surface CCN and surface aerosol levels, indicating strong wet scavenging. These findings highlight the importance of considering the covariation of cloud and aerosol properties driven by large-scale regimes when assessing aerosol indirect effects using observations.Item gWaveNet: Classification of Gravity Waves from Noisy Satellite Data using Custom Kernel Integrated Deep Learning Method(2024-08-26) Mostafa, Seraj Al Mahmud; Faruque, Omar; Wang, Chenxi; Yue, Jia; Purushotham, Sanjay; Wang, JianwuAtmospheric gravity waves occur in the Earths atmosphere caused by an interplay between gravity and buoyancy forces. These waves have profound impacts on various aspects of the atmosphere, including the patterns of precipitation, cloud formation, ozone distribution, aerosols, and pollutant dispersion. Therefore, understanding gravity waves is essential to comprehend and monitor changes in a wide range of atmospheric behaviors. Limited studies have been conducted to identify gravity waves from satellite data using machine learning techniques. Particularly, without applying noise removal techniques, it remains an underexplored area of research. This study presents a novel kernel design aimed at identifying gravity waves within satellite images. The proposed kernel is seamlessly integrated into a deep convolutional neural network, denoted as gWaveNet. Our proposed model exhibits impressive proficiency in detecting images containing gravity waves from noisy satellite data without any feature engineering. The empirical results show our model outperforms related approaches by achieving over 98% training accuracy and over 94% test accuracy which is known to be the best result for gravity waves detection up to the time of this work. We open sourced our code at https://rb.gy/qn68ku.