• Login
    View Item 
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC College of Engineering and Information Technology
    • UMBC Computer Science and Electrical Engineering Department
    • View Item
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC College of Engineering and Information Technology
    • UMBC Computer Science and Electrical Engineering Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Secure Infrastructure for Service Discovery and Access in Pervasive Computing

    Thumbnail
    Links to Files
    https://ebiquity.umbc.edu/paper/html/id/57/A-Secure-Infrastructure-for-Service-Discovery-and-Access-in-Pervasive-Computing
    Permanent Link
    http://hdl.handle.net/11603/12659
    Collections
    • UMBC Computer Science and Electrical Engineering Department
    • UMBC Faculty Collection
    • UMBC Student Collection
    Metadata
    Show full item record
    Author/Creator
    Cedilnik, Andrej
    Kagal, Lalana
    Perich, Filip
    Undercoffer, Jeffrey
    Joshi, Anupam
    Date
    2001-08-12
    Type of Work
    20 pages
    Text
    technical reports
    Rights
    This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
    Subjects
    pervasive computing
    security
    distributed trust
    smart cards
    extensible markup language
    UMBC Ebiquity Research Group
    Abstract
    Security is paramount to the success of pervasive computing environments. The system presented in this paper provides a communications and security infrastructure that goes far in advancing the goal of anywhere - anytime computing. Our work securely enables clients to access and utilize services in heterogeneous networks. We provide a service registration and discovery mechanism implemented through a hierarchy of service management. The system is built upon a simplified Public Key Infrastructure that provides for authentication, non-repudiation, anti-playback, and access control. Smartcards are used as secure containers for digital certi cates. The system is implemented in Java and we use Extensible Markup Language as the sole medium for communications and data exchange. Currently, we are solely dependent on a base set of access rights for our distributed trust model however, we are expanding the model to include the delegation of rights based upon a predefined policy. In our proposed expansion, instead of exclusively relying on predefined access rights, we have developed a flexible representation of trust information, in Prolog, that can model permissions, obligations, entitlements, and prohibitions. In this paper, we present the implementation of our system and describe the modifications to the design that are required to further enhance distributed trust. Our implementation is applicable to any distributed service infrastructure, whether the infrastructure is wired, mobile, or ad-hoc.


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3544


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.

     

     

    My Account

    LoginRegister

    Browse

    This CollectionBy Issue DateTitlesAuthorsSubjectsType

    Statistics

    View Usage Statistics


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3544


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.