Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter
Loading...
Links to Files
Author/Creator ORCID
Date
2019-02-27
Type of Work
Department
Program
Citation of Original Publication
Park, Kyoung-Duck et al. Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Science Advances 5 (July 12, 2019), no. 7. https://doi.org/10.1126/sciadv.aav5931
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Abstract
Optical cavities can enhance and control light-matter interactions. This has recently
been extended to the nanoscale, and with single emitter strong coupling
regime even at room temperature using plasmonic nano-cavities with deep
sub-diffraction-limited mode volumes. However, with emitters in static nanocavities,
this limits the ability to tune coupling strength or to couple different
emitters to the same cavity. Here, we present tip-enhanced strong coupling
(TESC) spectroscopy, imaging, and control. Based on a nano-cavity formed
between a scanning plasmonic antenna-tip and the substrate, by reversibly and
dynamically addressing single quantum dots (QDs) we observe mode splitting
> 160 meV and anticrossing over a detuning range of ~100 meV, and with sub-nm precision control over the mode volume in the ~103 nm3 regime. Our
approach, as a new paradigm of nano-cavity quantum-electrodynamics nearfield
microscopy to induce, probe, and control single-emitter plasmon hybrid
quantum states, opens new pathways from opto-electronics to quantum information
science.