• Login
    View Item 
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC Interdepartmental Collections
    • UMBC Theses and Dissertations
    • View Item
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC Interdepartmental Collections
    • UMBC Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient multigrid methods for optimal control of partial differential equations

    Thumbnail
    Files
    Hajghassem_umbc_0434D_11633.pdf (351.8Kb)
    Permanent Link
    http://hdl.handle.net/11603/15684
    Collections
    • UMBC Theses and Dissertations
    Metadata
    Show full item record
    Author/Creator
    Unknown author
    Date
    2017-01-01
    Type of Work
    Text
    dissertation
    Department
    Mathematics and Statistics
    Program
    Mathematics, Applied
    Rights
    This item may be protected under Title 17 of the U.S. Copyright Law. It is made available by UMBC for non-commercial research and education. For permission to publish or reproduce, please see http://aok.lib.umbc.edu/specoll/repro.php or contact Special Collections at speccoll(at)umbc.edu
    Distribution Rights granted to UMBC by the author.
    Abstract
    This work is concerned with designing optimal order multigrid preconditioners for optimal control problems constrained by partial differential equations (PDEs). Two different optimal control problems are discussed in the dissertation. For the first problem, the PDE constraint is a linear parabolic equation and the control is the forcing term which is distributed in space and time, while for the second problem, the PDE constraint is an elliptic equation and the controls lie on the boundary. For the first problem (distributed optimal control problem constrained by a linear parabolic equation), standard space-time finite element discretizations (e.g., Crank-Nicolson discretization) lead to suboptimal results. For the boundary control of elliptic equations there is a clear distinction in terms of quality of the preconditioning between Dirichlet and Neumann boundary control, namely we observed what appear to be optimal order results for Neumann boundary control problem, while for Dirichlet boundary control the preconditioners appear to be suboptimal. In addition to the analysis of the multigrid preconditioners, the main contribution of this work for the first problem is to point out a discretization that leads to preconditioners that are of provably optimal order.


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3544


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.

     

     

    My Account

    LoginRegister

    Browse

    This CollectionBy Issue DateTitlesAuthorsSubjectsType

    Statistics

    View Usage Statistics


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3544


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.