Wintertime Formaldehyde: Airborne Observations and Source Apportionment Over the Eastern United States

Date

2021-01-12

Department

Program

Citation of Original Publication

Green, Jaime R. et al.; Wintertime Formaldehyde: Airborne Observations and Source Apportionment Over the Eastern United States; Journal of Geophysical Research : Atmospheres, 126, 5, 12 January, 2021; https://doi.org/10.1029/2020JD033518

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.

Subjects

Abstract

Formaldehyde (HCHO) is generated from direct urban emission sources and secondary production from the photochemical reactions of urban smog. HCHO is linked to tropospheric ozone formation, and contributes to the photochemical reactions of other components of urban smog. In this study, pollution plume intercepts during the Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign were used to investigate and characterize the formation of HCHO in relation to several anthropogenic tracers. Analysis of aircraft intercepts combined with detailed chemical box modeling downwind of several cities suggests that the most important contribution to observed HCHO was primary emission. A box model analysis of a single plume suggested that secondary sources contribute to 21 ± 10% of the observed HCHO. Ratios of HCHO/CO observed in the northeast US, from Ohio to New York, ranging from 0.2% to 0.6%, are consistent with direct emissions combined with at most modest photochemical production. Analysis of the nocturnal boundary layer and residual layer from repeated vertical profiling over urban influenced areas indicate a direct HCHO emission flux of 1.3 × 10¹⁴ molecules cm⁻² h⁻¹. In a case study in Atlanta, GA, nighttime HCHO exhibited a ratio to CO (0.6%–1.8%) and was anti-correlated with O₃. Observations were consistent with mixing between direct HCHO emissions in urban air masses with those influenced by more rapid HCHO photochemical production. The HCHO/CO emissions ratios determined from the measured data are 2.3–15 times greater than the NEI 2017 emissions database. The largest observed HCHO/CO was 1.7%–1.8%, located near co-generating power stations.