Show simple item record

dc.contributor.authorColmenar, R. K. L.
dc.contributor.authorKestner, J. P.
dc.date.accessioned2022-06-23T16:33:10Z
dc.date.available2022-06-23T16:33:10Z
dc.description.abstractWe derive an integral expression for the filter-transfer function of an arbitrary one-qubit gate through the use of dynamical invariant theory and Hamiltonian reverse engineering. We use this result to define a cost functional which can be efficiently optimized to produce one-qubit control pulses that are robust against specified frequency bands of the noise power spectral density. We demonstrate the utility of our result by generating optimal control pulses that are designed to suppress broadband detuning and pulse amplitude noise. We report an order of magnitude improvement in gate fidelity in comparison with known composite pulse sequences. More broadly, we also use the same theoretical framework to prove the robustness of nonadiabatic geometric quantum gates under specific error models and control constraints.en_US
dc.description.sponsorshipThe authors acknowledge support from the National Science Foundation under Grant No. 1915064.en_US
dc.description.urihttps://arxiv.org/abs/2204.08457en_US
dc.format.extent11 pagesen_US
dc.genrejournal articlesen_US
dc.genrepreprintsen_US
dc.identifierdoi:10.13016/m2g6wj-afad
dc.identifier.urihttps://doi.org/10.48550/arXiv.2204.08457
dc.identifier.urihttp://hdl.handle.net/11603/25026
dc.language.isoen_USen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Physics Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.titleEfficient reverse engineering of one-qubit filter functions with dynamical invariantsen_US
dc.typeTexten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record