Design Analysis of Rocket Tail Fins Aimed at Higher Apogee by Computer Simulation

Author/Creator ORCID

Date

2022-04-22

Department

Program

Citation of Original Publication

Bunkley, J. A., & Caballes, M. J. L. O., & Ajuwon, M., & Chen, G. (2022, April), Design Analysis of Rocket Tail Fins Aimed at Higher Apogee by Computer Simulation Paper presented at 2022 Spring ASEE Middle Atlantic Section Conference, Newark, New Jersey. https://peer.asee.org/40047

Rights

© (2022) American Society for Engineering Education

Subjects

Abstract

The rocketry team at a mid-size University is developing a single-stage liquid-propellant rocket (LPR) with a targeted apogee of 13,000 feet. Due to the complexity of the LPR, each component of the rocket must be studied to optimize parameters that play a role in achieving the design apogee. These parameters do so either directly or by affecting other parameters in the optimization space. A wide variety of research papers and peer-reviewed journals that deal with the rocket nose cone and the characteristics of its airframe are already publicly accessible. However, only a few in-depth studies specifically address the design of the rocket's tail fins. Thus, this paper focuses on how different factors, such as the planform shape of the fins – clipped delta and trapezoidal; fin materials – carbon fiber, aluminum, and fiberglass; and its geometric dimensions – root chord and sweep angle, will affect the estimated apogee of a rocket and what is an ideal combination of design parameters. The simulation results collected using the software OpenRocket Simulator shows the possible outcomes of the rocket’s apogee. Furthermore, a factorial design methodology was employed using the collected data and the Minitab software to perform statistical analysis to determine the significant factors and generate surface and contour plots. From the data in the study, the best rocket tail fin design for apogee was determined to be three clipped delta-shaped tail fins made of fiberglass.