Neurosymbolic Reinforcement Learning and Planning: A Survey
Loading...
Links to Files
Author/Creator
Author/Creator ORCID
Date
2023-09-04
Type of Work
Department
Program
Citation of Original Publication
K. Acharya, W. Raza, C. Dourado, A. Velasquez and H. H. Song, "Neurosymbolic Reinforcement Learning and Planning: A Survey," in IEEE Transactions on Artificial Intelligence, doi: 10.1109/TAI.2023.3311428.
Rights
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subjects
Abstract
The area of Neurosymbolic Artificial Intelligence (Neurosymbolic AI) is rapidly developing and has become a popular research topic, encompassing sub-fields such as Neurosymbolic Deep Learning (Neurosymbolic DL) and Neurosymbolic Reinforcement Learning (Neurosymbolic RL). Compared to traditional learning methods, Neurosymbolic AI offers significant advantages by simplifying complexity and providing transparency and explainability. Reinforcement Learning(RL), a long-standing Artificial Intelligence(AI) concept that mimics human behavior using rewards and punishment, is a fundamental component of Neurosymbolic RL, a recent integration of the two fields that has yielded promising results. The aim of this paper is to contribute to the emerging field of Neurosymbolic RL by conducting a literature survey. Our evaluation focuses on the three components that constitute Neurosymbolic RL: neural, symbolic, and RL. We categorize works based on the role played by the neural and symbolic parts in RL, into three taxonomies: Learning for Reasoning, Reasoning for Learning and Learning-Reasoning. These categories are further divided into sub-categories based on their applications. Furthermore, we analyze the RL components of each research work, including the state space, action space, policy module, and RL algorithm. Additionally, we identify research opportunities and challenges in various applications within this dynamic field.