• Login
    View Item 
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC College of Natural and Mathematical Sciences
    • UMBC Biological Sciences Department
    • View Item
    •   Maryland Shared Open Access Repository Home
    • ScholarWorks@UMBC
    • UMBC College of Natural and Mathematical Sciences
    • UMBC Biological Sciences Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Chromatin Immunoprecipitation (ChIP) of Histone Modifications from Saccharomyces cerevisiae

    Thumbnail
    Files
    ErinGreen.pdf (745.4Kb)
    Links to Files
    https://www.jove.com/video/57080
    Permanent Link
    doi:10.3791/57080
    http://hdl.handle.net/11603/7797
    Collections
    • UMBC Biological Sciences Department
    • UMBC Faculty Collection
    • UMBC Student Collection
    Metadata
    Show full item record
    Author/Creator
    Jezek, Meagan
    Jacques, Alison
    Jaiswal, Deepika
    Green, Erin M.
    Date
    2017
    Type of Work
    8 pages
    Collection
    Citation of Original Publication
    Jezek, M., Jacques, A., Jaiswal, D., Green, E.M. Chromatin Immunoprecipitation (ChIP) of Histone Modifications from Saccharomyces cerevisiae. Journal of Visualized Experienc, e57080, doi:10.3791/57080 (2017).
    Rights
    This item may be protected under Title 17 of the U.S. Copyright Law. It is made available by UMBC for non-commercial research and education. For permission to publish or reproduce, please contact the author.
    Subjects
    Epigenetics
    chromatin
    histone modifications
    methylation
    acetylation
    chromatin immunoprecipitation
    yeast
    Abstract
    Histone post-translational modifications (PTMs), such as acetylation, methylation and phosphorylation, are dynamically regulated by a series of enzymes that add or remove these marks in response to signals received by the cell. These PTMS are key contributors to the regulation of processes such as gene expression control and DNA repair. Chromatin immunoprecipitation (chIP) has been an instrumental approach for dissecting the abundance and localization of many histone PTMs throughout the genome in response to diverse perturbations to the cell. Here, a versatile method for performing chIP of post-translationally modified histones from the budding yeast Saccharomyces cerevisiae (S. cerevisiae) is described. This method relies on crosslinking of proteins and DNA using formaldehyde treatment of yeast cultures, generation of yeast lysates by bead beating, solubilization of chromatin fragments by micrococcal nuclease, and immunoprecipitation of histone-DNA complexes. DNA associated with the histone mark of interest is purified and subjected to quantitative PCR analysis to evaluate its enrichment at multiple loci throughout the genome. Representative experiments probing the localization of the histone marks H3K4me2 and H4K16ac in wildtype and mutant yeast are discussed to demonstrate data analysis and interpretation. This method is suitable for a variety of histone PTMs and can be performed with different mutant strains or in the presence of diverse environmental stresses, making it an excellent tool for investigating changes in chromatin dynamics under different conditions.


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3544


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.

     

     

    My Account

    LoginRegister

    Browse

    This CollectionBy Issue DateTitlesAuthorsSubjectsType

    Statistics

    View Usage Statistics


    Albin O. Kuhn Library & Gallery
    University of Maryland, Baltimore County
    1000 Hilltop Circle
    Baltimore, MD 21250
    www.umbc.edu/scholarworks

    Contact information:
    Email: scholarworks-group@umbc.edu
    Phone: 410-455-3544


    If you wish to submit a copyright complaint or withdrawal request, please email mdsoar-help@umd.edu.