Protein-ligand binding affinity prediction using SARS-CoV-2

dc.contributor.advisorRafael Zamora-Resendiz
dc.contributor.advisorDr. Aijuan Dong
dc.contributor.advisorDr. Dana Lawrence
dc.contributor.authorAnthony Rispoli
dc.contributor.departmentHood College Department of Computer Science and Information Technology
dc.contributor.programHood College Departmental Honors
dc.date.accessioned2024-04-25T18:41:52Z
dc.date.available2024-04-25T18:41:52Z
dc.date.issued2024-04-25
dc.description.abstractThe urgency of the COVID-19 pandemic has accelerated drug discovery efforts, prompting advancements in computational methods. This study aims to predict protein-ligand (PL) binding affinities using atomic-resolution structural data from SARS-CoV-2 interactions with ligands. Utilizing data from large-scale ensemble-docking experiments, Multivariate Linear Regression (MLR) and Random Forest (RF) regression models were trained. Despite marginal improvement with RF, both models struggled to establish reliable predictions, highlighting the complexity of PL binding affinity prediction. Future work entails exploring larger RF models, integrating deep learning approaches, and developing novel predictor features for enhanced predictive capabilities.
dc.description.sponsorshipNERSC and Lawrence Berkeley National Laboratory for computing resources.
dc.format.extent11 pages
dc.genrejournal articles
dc.identifierdoi:10.13016/m2jlqr-ezh2
dc.identifier.urihttp://hdl.handle.net/11603/33255
dc.language.isoen_US
dc.rightsCC0 1.0 Universalen
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectprotein-ligand binding
dc.subjectSARS-CoV-2
dc.subjectbinding affinity prediction
dc.subjectmachine-learning
dc.subjectmolecular dynamics simulations
dc.titleProtein-ligand binding affinity prediction using SARS-CoV-2
dc.typeText
dcterms.creatorhttps://orcid.org/0009-0008-2375-993X

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rispoli, Anthony Departmental Honors Paper.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.65 KB
Format:
Item-specific license agreed upon to submission
Description: