FEM Convergence for PDEs with Point Sources in 2-D and 3-D
Loading...
Permanent Link
Author/Creator
Author/Creator ORCID
Date
2015
Type of Work
Department
Program
Citation of Original Publication
Gobbert, M., Kalayeh, K. M., Graf, J. S. FEM Convergence for PDEs with Point Sources in 2-D and 3-D. Presented at COMSOL Conference 2015, Boston, MA..
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Abstract
Numerical theory provides the basis for quantification of the accuracy and reliability of a FEM solution by error estimates on the FEM error vs. the mesh spacing of the FEM mesh. This paper presents techniques needed in COMSOL 5.1 to perform computational studies for elliptic test problems in two and three space dimensions that demonstrate this theory by computing the convergence order of the FEM error. In particular, we show how to perform these techniques for a problem involving a point source modeled by a Dirac delta distribution as forcing term. This demonstrates that PDE problems with a non-smooth source term necessarily have degraded convergence order compared to problems with smooth right-hand sides and thus can be most efficiently solved by low-order FEM such as linear Lagrange elements.