Satellite data fusion of multiple observed XCO2 using compressive sensing

dc.contributor.authorNguyen, Phuong
dc.contributor.authorShivadekar, Samit
dc.contributor.authorChukkapalli, Sai Sree
dc.contributor.authorHalem, Milton
dc.date.accessioned2020-05-13T14:18:02Z
dc.date.available2020-05-13T14:18:02Z
dc.date.issued2020-04-22
dc.descriptionSPIE Defense + Commercial Sensing, 2020, Online Only, California, United States
dc.description.abstractWhen it entered into the era of big data, Earth observing systems developed into a new stage, namely characterized by low cost, multi-national, multi-sensor and multi-modal with varying spatial and spectral resolutions confronting new challenges and opportunities. Climate data records from multiple data sources are used to infer seasonal and interannual variations which will advance and promote the development of data fusion methods. Compressed sensing is a new framework in which data acquisition and data processing are merged. It provides a new fantastic way to handle multiple observations of the same field view from complementary remote sensing instruments, allowing us to recover information at very low signal-to-noise ratio. We will particularly point out that a Compressive Sensing based framework is flexible enough for combining the two measurement systems by fusing the data from the two satellites, NASA Orbiting Carbon Observatory -2 (OCO-2) and the JAXA Greenhouse gases from Orbiting Satellites (GOSAT) to calculate the interannual Net XCO2 variability over land for three latitudinal regions, Alaska/Canada, United States and the Amazon/Brazil. The OCO-2 design is optimized for sensitivity to XCO2 variations, with an unprecedented combination of spatial resolution (about 3km) with narrow nadir coverage, while GOSAT provides broader spatial coverage (10km) with wider scanning coverage. There are different temporal degradations of both instruments over time because GOSAT was launched in 2009 and OCO-2 was launched in 2014. Both instruments infer CO2 concentration from high-resolution measurements of reflected sunlight and use similar inversion algorithms to retrieve CO2 concentrations. Both are passive satellites providing on-orbit global measurements of the greenhouse gas, XCO2, for the years 2015 -2018. The results of the CS data fusion framework show that the fused data have Root Mean Square Error (RMSE) varying from 1.31 ppm to 4.12 ppm compared with original data, depending on the region of study and gridding resolution. Validation of fused data compared with AmeriFlux station towers observations shows RMSE of 2.68 ppm.en_US
dc.description.sponsorshipThis study was funded by the NASA grant number NNH16ZDA001N-AIST16-0091. We also acknowledge the support of the NSF supported Center for Accelerated Real Time Analytics (CARTA), University Of Maryland Baltimore Countyen_US
dc.description.urihttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11423/114230Y/Satellite-data-fusion-of-multiple-observed-XCO2-using-compressive-sensing/10.1117/12.2558319.shorten_US
dc.format.extent14 pagesen_US
dc.genreconference papers and proceedignsen_US
dc.identifierdoi:10.13016/m2yjvl-5ivj
dc.identifier.citationPhuong Nguyenet al., "Satellite data fusion of multiple observed XCO2 using compressive sensing", Proc. SPIE 11423, Signal Processing, Sensor/Information Fusion, and Target Recognition XXIX, 114230Y (22 April 2020); https://doi.org/10.1117/12.2558319en_US
dc.identifier.urihttps://doi.org/10.1117/12.2558319
dc.identifier.urihttp://hdl.handle.net/11603/18589
dc.language.isoen_USen_US
dc.publisherSPIEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rights©2020 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.  
dc.titleSatellite data fusion of multiple observed XCO2 using compressive sensingen_US
dc.typeTexten_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
114230Y.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: