On spectral radius algebras
Loading...
Links to Files
Collections
Author/Creator
Author/Creator ORCID
Date
2008
Type of Work
Department
Program
Citation of Original Publication
Biswas, Animikh, Alan Lambert, Srdjan Petrovic, and Barnet Weinstock. “On Spectral Radius Algebras” Operators and Matrices 2, no. 2 (2008): 167–76. https://dx.doi.org/10.7153/oam-02-11.
Rights
Attribution-NonCommercial 3.0 Unported
Subjects
Abstract
We show how one can associate a Hermitian operator P to every operator A , and we prove that the invertibility properties of P imply the non-transitivity and density of the spectral radius algebra associated to A . In the finite dimensional case we give a complete characterization of these algebras in terms of P . In addition, we show that in the finite dimensional case, the spectral radius algebra always properly contains the commutant of A .