On spectral radius algebras

dc.contributor.authorBiswas, Animikh
dc.contributor.authorLambert, Alan
dc.contributor.authorPetrovic, Srdjan
dc.contributor.authorWeinstock, Barnet
dc.date.accessioned2024-11-14T15:18:26Z
dc.date.available2024-11-14T15:18:26Z
dc.date.issued2008
dc.description.abstractWe show how one can associate a Hermitian operator P to every operator A , and we prove that the invertibility properties of P imply the non-transitivity and density of the spectral radius algebra associated to A . In the finite dimensional case we give a complete characterization of these algebras in terms of P . In addition, we show that in the finite dimensional case, the spectral radius algebra always properly contains the commutant of A .
dc.description.urihttps://oam.ele-math.com/02-11/On-spectral-radius-algebras
dc.format.extent10 pages
dc.genrejournal articles
dc.identifierdoi:10.13016/m2z4xu-5szg
dc.identifier.citationBiswas, Animikh, Alan Lambert, Srdjan Petrovic, and Barnet Weinstock. “On Spectral Radius Algebras” Operators and Matrices 2, no. 2 (2008): 167–76. https://dx.doi.org/10.7153/oam-02-11.
dc.identifier.urihttps://dx.doi.org/10.7153/oam-02-11
dc.identifier.urihttp://hdl.handle.net/11603/36920
dc.language.isoen_US
dc.publisherElement d.o.o.
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics and Statistics Department
dc.rightsAttribution-NonCommercial 3.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/
dc.titleOn spectral radius algebras
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0001-8594-0568

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
oam0211.pdf
Size:
312.55 KB
Format:
Adobe Portable Document Format