On spectral radius algebras
dc.contributor.author | Biswas, Animikh | |
dc.contributor.author | Lambert, Alan | |
dc.contributor.author | Petrovic, Srdjan | |
dc.contributor.author | Weinstock, Barnet | |
dc.date.accessioned | 2024-11-14T15:18:26Z | |
dc.date.available | 2024-11-14T15:18:26Z | |
dc.date.issued | 2008 | |
dc.description.abstract | We show how one can associate a Hermitian operator P to every operator A , and we prove that the invertibility properties of P imply the non-transitivity and density of the spectral radius algebra associated to A . In the finite dimensional case we give a complete characterization of these algebras in terms of P . In addition, we show that in the finite dimensional case, the spectral radius algebra always properly contains the commutant of A . | |
dc.description.uri | https://oam.ele-math.com/02-11/On-spectral-radius-algebras | |
dc.format.extent | 10 pages | |
dc.genre | journal articles | |
dc.identifier | doi:10.13016/m2z4xu-5szg | |
dc.identifier.citation | Biswas, Animikh, Alan Lambert, Srdjan Petrovic, and Barnet Weinstock. “On Spectral Radius Algebras” Operators and Matrices 2, no. 2 (2008): 167–76. https://dx.doi.org/10.7153/oam-02-11. | |
dc.identifier.uri | https://dx.doi.org/10.7153/oam-02-11 | |
dc.identifier.uri | http://hdl.handle.net/11603/36920 | |
dc.language.iso | en_US | |
dc.publisher | Element d.o.o. | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Mathematics and Statistics Department | |
dc.rights | Attribution-NonCommercial 3.0 Unported | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/3.0/ | |
dc.title | On spectral radius algebras | |
dc.type | Text | |
dcterms.creator | https://orcid.org/0000-0001-8594-0568 |
Files
Original bundle
1 - 1 of 1