Using flux theory in dynamic omics data sets to identify differentially changing signals using DPoP

dc.contributor.authorEdwards, Harley
dc.contributor.authorZavorskas, Joseph
dc.contributor.authorHuso, Walker
dc.contributor.authorDoan, Alexander G.
dc.contributor.authorSilbiger, Caton
dc.contributor.authorHarris, Steven
dc.contributor.authorSrivastava, Ranjan
dc.contributor.authorMarten, Mark
dc.date.accessioned2025-07-09T17:55:24Z
dc.date.issued2024-9-27
dc.description.abstractDerivative profiling is a novel approach to identify differential signals from dynamic omics data sets. This approach applies variable step-size differentiation to time dynamic omics data. This work assumes that there is a general omics derivative that is a useful and descriptive feature of dynamic omics experiments. We assert that this omics derivative, or omics flux, is a valuable descriptor that can be used instead of, or with, fold change calculations.
dc.description.sponsorshipThis material is based upon work supported by the National Science Foundation under Grant No. 2006189. Any opinions, fndings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily refect the views of the National Science Foundation
dc.description.urihttps://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-024-05938-9
dc.format.extent20 pages
dc.genrejournal articles
dc.identifierdoi:10.13016/m29mps-ptlv
dc.identifier.citationHarley Edwards et al., “Using Flux Theory in Dynamic Omics Data Sets to Identify Differentially Changing Signals Using DPoP,” BMC Bioinformatics 25, no. 1 (September 27, 2024): 312, https://doi.org/10.1186/s12859-024-05938-9.
dc.identifier.urihttps://doi.org/10.1186/s12859-024-05938-9
dc.identifier.urihttp://hdl.handle.net/11603/39308
dc.language.isoen_US
dc.publisherSpringer Nature
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Chemical, Biochemical & Environmental Engineering Department
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDifferential signal identification
dc.subjectProteomic
dc.subjectTime series analysis
dc.subjectPhosphoproteomic
dc.subjectTranscriptomic
dc.subjectDynamic omics analysis
dc.titleUsing flux theory in dynamic omics data sets to identify differentially changing signals using DPoP
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-4110-1687
dcterms.creatorhttps://orcid.org/0009-0008-6972-1865
dcterms.creatorhttps://orcid.org/0000-0002-1863-8956

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
s12859024059389.pdf
Size:
2.95 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
12859_2024_5938_MOESM1_ESM.pdf
Size:
19.09 MB
Format:
Adobe Portable Document Format