A METHOD FOR EXPRESSING MULTIPLE TRANSGENIC PROTEINS IN THE CHLAMYDOMONAS REINHARDTII CHLOROPLAST FOR BIOTECHNOLOGY APPLICATIONS
Loading...
Links to Files
Permanent Link
Author/Creator
Author/Creator ORCID
Date
2018-01-01
Type of Work
Department
Biological Sciences
Program
Biological Sciences
Citation of Original Publication
Rights
Distribution Rights granted to UMBC by the author.
Access limited to the UMBC community. Item may possibly be obtained via Interlibrary Loan thorugh a local library, pending author/copyright holder's permission.
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Access limited to the UMBC community. Item may possibly be obtained via Interlibrary Loan thorugh a local library, pending author/copyright holder's permission.
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Subjects
Abstract
Microalgae are a promising platform for producing valuable commercial products in various biotechnological applications. In particular, the simultaneous expression of distinct proteins has emerged as a desirable strategy for large-scale production but is not easily achieved. Here, I describe a synthetic operon strategy to express transgenic proteins in the chloroplast genome of Chlamydomonas reinhardtii. I generated chloroplast expression vectors for expressing up to three proteins (FBPase, FBA1, VHH or AtpB), using either a cyanobacterial operon spacer or a tobacco chloroplast operon spacer, or both. In all, nine operon expression vectors were integrated into the chloroplast genome and transformants were obtained for each of them. All operons containing FBP1 and atpB coding sequences expressed the products of those genes, however, neither FBA1 nor VHH proteins were expressed from the operons that contained the FBA1 or VHH genes. These results indicated that the synthetic operon strategy can work, but that not all proteins can be expressed using the vectors I generated. In my second project, I generated a chloroplast vector to express a single-chain, streptavidin-tagged VHH antibody against the food-poisoning agent Campylobacter jejuni and integrated it into the chloroplast genome of C. reinhardtii. I obtained transgenic C. reinhardtii strains that produced the VHH antibody. These transgenic strains ideally could be fed to chickens to reduce C. jejuni colonization levels or motility in target populations. However, the VHH antibody unfortunately did not work as intended in inhibiting C. jejuni mobility or colonization, possibly because the streptavidin tag interferes with antibody function. Although the strategies explored in these two projects encountered barriers to practical application, they should serve as a basis for future efforts to express valuable transgenic proteins in green algae.