A Matrix-Free Conjugate Gradient Method for Cluster Computing

dc.contributor.authorAllen, Kevin P.
dc.contributor.authorGobbert, Matthias
dc.date.accessioned2025-08-13T20:14:35Z
dc.date.issued2003-02-01
dc.description.abstractThe conjugate gradient method is applied to a large, sparse, highly structured linear system of equations obtained from a finite difference discretization of the Poisson equation. The matrix-free implementation of the matrix-vector product is shown to be optimal with respect to both memory usage and performance. The parallel implementation of the method can give excellent performance on a cluster of workstations, with the optimal number of processors depending on the quality of the interconnect hardware. This justifies the use of the method as computational kernel for the time-stepping in a system of reaction-diffusion equations.
dc.format.extent3 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2noku-ycmj
dc.identifier.urihttp://hdl.handle.net/11603/39789
dc.language.isoen
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics and Statistics Department
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.titleA Matrix-Free Conjugate Gradient Method for Cluster Computing
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-1745-2292

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AMatrixFreeConjudocument.pdf
Size:
169.29 KB
Format:
Adobe Portable Document Format