Benchmarking domain adaptation for semantic segmentation

dc.contributor.authorAhmed, Masud
dc.contributor.authorHasan, Zahid
dc.contributor.authorKhan, Naima
dc.contributor.authorRoy, Nirmalya
dc.contributor.authorPurushotham, Sanjay
dc.contributor.authorGangopadhyay, Aryya
dc.contributor.authorYou, Suya
dc.date.accessioned2023-08-11T16:58:26Z
dc.date.available2023-08-11T16:58:26Z
dc.date.issued2022-05-31
dc.descriptionSPIE Defense + Commercial Sensing 2022, Orlando, Florida, United States, 3–7 April 2022en_US
dc.description.abstractDeep Learning (DL) requires a massive, labeled dataset for supervised semantic segmentation. Getting massive labeled data under a new setting (target domain) to perform semantic segmentation requires huge efforts in time and resources. One possible solution is domain adaptation (DA) where researchers transform the data distribution of existent annotated public data (source domain) to resemble the target domain. We develop a model on this transformed data. Nevertheless, this poses the questions of what source domain/s to utilize, and what types of transformation to perform on that domain/s. In this research work, we study those answers by benchmarking different data transformation approaches on source-only and single-source domain adaptation setups. We provide a new well-suited dataset using unmanned ground vehicle Husarion ROSbot 2.0 to analyze and demonstrate the relative performance of different DA approaches.en_US
dc.description.sponsorshipThis research is supported by U.S. Army grant W911NF2120076.en_US
dc.description.urihttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/12124/121240F/Benchmarking-domain-adaptation-for-semantic-segmentation/10.1117/12.2618548.short?SSO=1en_US
dc.format.extent13 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.identifierdoi:10.13016/m22ltb-tylk
dc.identifier.citationMasud Ahmed, Zahid Hasan, Naima Khan, Nirmalya Roy, Sanjay Purushotham, Aryya Gangopadhyay, Suya You, "Benchmarking domain adaptation for semantic segmentation," Proc. SPIE 12124, Unmanned Systems Technology XXIV, 121240F (31 May 2022); doi: 10.1117/12.2618548en_US
dc.identifier.urihttps://doi.org/10.1117/12.2618548
dc.identifier.urihttp://hdl.handle.net/11603/29172
dc.language.isoen_USen_US
dc.publisherSPIEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofseries;https://doi.org/10.1117/12.2618548
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.rightsPublic Domain Mark 1.0*
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/*
dc.titleBenchmarking domain adaptation for semantic segmentationen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0002-8495-0948en_US
dcterms.creatorhttps://orcid.org/0000-0003-3445-9779en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
121240F.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: