GADAN: Generative Adversarial Domain Adaptation Network For Debris Detection Using Drone

dc.contributor.authorAhmed, Masud
dc.contributor.authorKhan, Naima
dc.contributor.authorOvi, Pretom Roy
dc.contributor.authorRoy, Nirmalya
dc.contributor.authorPurushotham, Sanjay
dc.contributor.authorGangopadhyay, Aryya
dc.contributor.authorYou, Suya
dc.date.accessioned2023-08-11T17:15:01Z
dc.date.available2023-08-11T17:15:01Z
dc.date.issued2022-09-12
dc.description2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS), Marina del Rey, Los Angeles, CA, USA, 30 May 2022 - 01 June 2022en_US
dc.description.abstractIn maritime, coastal, and riverine environments debris has become an abundant pollutant, posing a significant threat to aquatic life. Existing debris detection systems are mostly designed to detect debris for specific type of environment. Therefore, we propose GADAN, an autonomous debris detection model fusing RGB and thermal images, and experiment on both over land and aquatic environment. We collected data using the Parrot Anafi Thermal drone from different water streams, and construction sites near the aquatic environment. We employ a generative domain adaptation based architecture to generate the thermal image compatible with the RGB image. We postulate a two-stream network on these thermal and RGB pairs of images separately, and pass the concatenated features to object detecting YOLO model. We also demonstrated the performance of debris detection using only RGB and only thermal images. Our proposed GADAN network incorporating RGB and thermal images outperforms (with a mean averageen_US
dc.description.sponsorshipThis research is partially supported by the NSF CAREER Award # 1750936, ONR under grant N00014-18-1-2462, and U.S. Army grant W911NF2120076.en_US
dc.description.urihttps://ieeexplore.ieee.org/document/9881660en_US
dc.format.extent6 pagesen_US
dc.genreconference papers and proceedingsen_US
dc.identifierdoi:10.13016/m2qwbe-kups
dc.identifier.citationM. Ahmed et al., "GADAN: Generative Adversarial Domain Adaptation Network For Debris Detection Using Drone," 2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS), Marina del Rey, Los Angeles, CA, USA, 2022, pp. 277-282, doi: 10.1109/DCOSS54816.2022.00053.en_US
dc.identifier.urihttps://doi.org/10.1109/DCOSS54816.2022.00053
dc.identifier.urihttp://hdl.handle.net/11603/29173
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.rightsPublic Domain Mark 1.0*
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/*
dc.titleGADAN: Generative Adversarial Domain Adaptation Network For Debris Detection Using Droneen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0003-3445-9779en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GADAN_Generative_Adversarial_Domain_Adaptation_Network_For_Debris_Detection_Using_Drone.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: