Identifying the genes involved in the egg-carrying ovigerous hair development of the female blue crab Callinectes sapidus: transcriptomic and genomic expression analyses





Citation of Original Publication

Wang, Tao, Tsvetan Bachvaroff, and J. Sook Chung. “Identifying the Genes Involved in the Egg-Carrying Ovigerous Hair Development of the Female Blue Crab Callinectes Sapidus: Transcriptomic and Genomic Expression Analyses.” BMC Genomics 24, no. 1 (December 11, 2023): 764.


This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
CC BY 4.0 DEED Attribution 4.0 International



Background Crustacean female sex hormone (CFSH) controls gradually developing adult female-specific morphological features essential for mating and brood care. Specifically, ovigerous hairs are developed during the prepuberty molt cycle of the blue crab Callinectes sapidus that are essential for carrying the eggs until they finish development. Reduced CFSH transcripts by CFSH-dsRNA injections result in fewer and shorter ovigerous hairs than the control. This study aimed to identify the specific genes responsible for ovigerous hair formation using transcriptomic, genomic and expression analyses of the ovigerous setae at three stages: prepuberty at early (OE) and late premolt (OL), and adult (AO) stages. Results The de novo Trinity assembly on filtered sequence reads produced 96,684 Trinity genes and 124,128 transcripts with an N50 of 1,615 bp. About 27.3% of the assembled Trinity genes are annotated to the public protein sequence databases (i.e., NR, Swiss-Prot, COG, KEGG, and GO databases). The OE vs. OL, OL vs. AO, and OE vs. AO comparisons resulted in 6,547, 7,793, and 7,481 differentially expressed genes, respectively, at a log2-fold difference. Specifically, the genes involved in the Wnt signaling and cell cycle pathways are positively associated with ovigerous hair development. Moreover, the transcripts of ten cuticle protein genes containing chitin-binding domains are most significantly changed by transcriptomic analysis and RT-qPCR assays, which shows a molt-stage specific, down-up-down mode across the OE-OL-AO stages. Furthermore, the expression of the cuticle genes with the chitin-binding domain, Rebers and Riddiford domain (RR)-1 appears at early premolt, followed by RR-2 at late premolt stage. Mapping these 10 cuticle protein sequences to the C. sapidus genome reveals that two scaffolds with a 549.5Kb region and 35 with a 1.19 Mb region harbor 21 RR1 and 20 RR2 cuticle protein genes, respectively. With these findings, a putative mode of CFSH action in decapod crustaceans is proposed. Conclusions The present study describes a first step in understanding the mechanism underlying ovigerous hair formation in C. sapidus at the molecular level. Overall, demonstrating the first transcriptome analysis of crustacean ovigerous setae, our results may facilitate future studies into the decapod female reproduction belonging to the suborder Pleocyemata.