Representation Learning of Taxonomies for Taxonomy Matching

dc.contributor.authorLin, Hailun
dc.contributor.authorLiu, Yong
dc.contributor.authorZhang, Peng
dc.contributor.authorWang, Jianwu
dc.date.accessioned2024-02-13T20:39:30Z
dc.date.available2024-02-13T20:39:30Z
dc.date.issued2019-06-08
dc.descriptionInternational Conference on Computational Science, ICCS 2019 12-14 June Faro, Portugal
dc.description.abstractTaxonomy matching aims to discover categories alignments between two taxonomies, which is an important operation of knowledge sharing task to benefit many applications. The existing methods for taxonomy matching mostly depend on string lexical features and domain-specific information. In this paper, we consider the method of representation learning of taxonomies, which projects categories and relationships into low-dimensional vector spaces. We propose a method to takes advantages of category hierarchies and siblings, which exploits a low-dimensional semantic space to modeling categories relations by translating operations in the semantic space. We take advantage of maximum weight matching problem on bipartite graphs to model taxonomy matching problem, which runs in polynomial time to generate optimal categories alignments for two taxonomies in a global manner. Experimental results on OAEI benchmark datasets show that our method significantly outperforms the baseline methods in taxonomy matching.
dc.description.urihttps://link.springer.com/chapter/10.1007/978-3-030-22734-0_28
dc.format.extent14 pages
dc.genrebooks chapters
dc.genreconference papers and proceedings
dc.genrepostprints
dc.identifierdoi:10.13016/m2jmhn-4ezk
dc.identifier.citationLin, H., Liu, Y., Zhang, P., Wang, J. (2019). Representation Learning of Taxonomies for Taxonomy Matching. In: Rodrigues, J., et al. Computational Science – ICCS 2019. ICCS 2019. Lecture Notes in Computer Science(), vol 11536. Springer, Cham. https://doi.org/10.1007/978-3-030-22734-0_28
dc.identifier.urihttps://doi.org/10.1007/978-3-030-22734-0_28
dc.identifier.urihttp://hdl.handle.net/11603/31612
dc.language.isoen_US
dc.publisherSpringer
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Center for Accelerated Real Time Analysis
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.relation.ispartofUMBC Data Science
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology (JCET)
dc.relation.ispartofUMBC Center for Real-time Distributed Sensing and Autonomy
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectUMBC Big Data Analytics Lab
dc.titleRepresentation Learning of Taxonomies for Taxonomy Matching
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-9933-1170

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
115360377.pdf
Size:
233.52 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: