On Surrogate Learning for Linear Stability Assessment of Navier-Stokes Equations with Stochastic Viscosity

Date

2022-03-01

Department

Program

Citation of Original Publication

Sousedík, B., Elman, H.C., Lee, K. et al. On surrogate learning for linear stability assessment of Navier-Stokes Equations with stochastic viscosity. Appl Math 67, 727–749 (2022). https://doi.org/10.21136/AM.2022.0046-21

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.

Subjects

Abstract

We study linear stability of solutions to the Navier\textendash Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a~stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates based on generalized polynomial chaos, Gaussian process regression and a shallow neural network. The results of linear stability analysis assessment obtained by the surrogates are compared to that of Monte Carlo simulation using a set of numerical experiments.