Large-Scale Independent Vector Analysis (IVA-G) via Coresets
dc.contributor.author | Gabrielson, Ben | |
dc.contributor.author | Yang, Hanlu | |
dc.contributor.author | Vu, Trung | |
dc.contributor.author | Calhoun, Vince | |
dc.contributor.author | Adali, Tulay | |
dc.date.accessioned | 2025-01-31T18:24:03Z | |
dc.date.available | 2025-01-31T18:24:03Z | |
dc.date.issued | 2025 | |
dc.description.abstract | Joint blind source separation (JBSS) involves the factorization of multiple matrices, i.e. “datasets”, into “sources” that are statistically dependent across datasets and independent within datasets. Despite this usefulness for analyzing multiple datasets, JBSS methods suffer from considerable computational costs and are typically intractable for hundreds or thousands of datasets. To address this issue, we present a methodology for how a subset of the datasets can be used to perform efficient JBSS over the full set. We motivate two such methods: a numerical extension of independent vector analysis (IVA) with the multivariate Gaussian model (IVA-G), and a recently proposed analytic method resembling generalized joint diagonalization (GJD). We derive nonidentifiability conditions for both methods, and then demonstrate how one can significantly improve these methods’ generalizability by an efficient representative subset selection method. This involves selecting a coreset (a weighted subset) that minimizes a measure of discrepancy between the statistics of the coreset and the full set. Using simulated and real functional magnetic resonance imaging (fMRI) data, we demonstrate significant scalability and source separation advantages of our “coreIVA-G” method vs. other JBSS methods. | |
dc.description.uri | https://ieeexplore.ieee.org/document/10798966/authors#authors | |
dc.format.extent | 13 pages | |
dc.genre | journal articles | |
dc.genre | postprints | |
dc.identifier | doi:10.13016/m2r1tt-eibs | |
dc.identifier.citation | Gabrielson, Ben, Hanlu Yang, Trung Vu, Vince Calhoun, and Tülay Adali. "Large-Scale Independent Vector Analysis (IVA-G) via Coresets". IEEE Transactions on Signal Processing 73 (2025): 230–44. https://doi.org/10.1109/TSP.2024.3517323. | |
dc.identifier.uri | https://doi.org/10.1109/TSP.2024.3517323 | |
dc.identifier.uri | http://hdl.handle.net/11603/37543 | |
dc.language.iso | en_US | |
dc.publisher | IEEE | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.relation.ispartof | UMBC Computer Science and Electrical Engineering Department | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.relation.ispartof | UMBC Student Collection | |
dc.rights | © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | |
dc.subject | UMBC Machine Learning and Signal Processing Lab (MLSP-Lab) | |
dc.subject | UMBC Ebiquity Research Group | |
dc.subject | Correlation | |
dc.subject | Analytical models | |
dc.subject | Joint blind source separation | |
dc.subject | Vectors | |
dc.subject | multiset canonical correlation analysis | |
dc.subject | Costs | |
dc.subject | Covariance matrices | |
dc.subject | Functional magnetic resonance imaging | |
dc.subject | Indexes | |
dc.subject | Numerical models | |
dc.subject | Magnetic cores | |
dc.subject | independent vector analysis | |
dc.subject | Blind source separation | |
dc.subject | UMBC Machine Learning for Signal Processing Laboratory (MLSP-Lab) | |
dc.title | Large-Scale Independent Vector Analysis (IVA-G) via Coresets | |
dc.type | Text | |
dcterms.creator | https://orcid.org/0000-0001-9217-6641 | |
dcterms.creator | https://orcid.org/0000-0001-7903-6257 | |
dcterms.creator | https://orcid.org/0000-0003-2180-5994 | |
dcterms.creator | https://orcid.org/0000-0003-0594-2796 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- coreIVA_G_final_submission.pdf
- Size:
- 3.43 MB
- Format:
- Adobe Portable Document Format