A Probabilistic Framework for Semantic Similarity and Ontology Mapping

dc.contributor.authorPeng, Yun
dc.contributor.authorDing, Zhongli
dc.contributor.authorPan, Rong
dc.contributor.authorYu, Yang
dc.contributor.authorKulvatunyou, Boonserm
dc.contributor.authorIvezik, Nenad
dc.contributor.authorJones, Albert
dc.contributor.authorCho, Hyunbo
dc.date.accessioned2018-11-29T18:29:55Z
dc.date.available2018-11-29T18:29:55Z
dc.date.issued2007-05-19
dc.descriptionProceedings of the 2007 Industrial Engineering Research Conferenceen_US
dc.description.abstractWe propose a probabilistic framework to address uncertainty in ontology-based semantic integration and interopera- tion. This framework consists of three main components: 1) BayesOWL that translates an OWL ontology to a Bayesian network, 2) SLBN (Semantically Linked Bayesian Networks) that support reasoning across translated BNs, and 3) a Learner that learns from the web the probabilities needed by the other modules. This framework expands the semantic web and can serve as a theoretical basis for solving real world semantic integration problems.en_US
dc.description.sponsorshipThis work was supported in part by NSF award IIS-0326460 and NIST award 60NANB6D6206.en_US
dc.description.urihttps://ebiquity.umbc.edu/paper/html/id/389/A-Probabilistic-Framework-for-Semantic-Similarity-and-Ontology-Mappingen_US
dc.format.extent6 pagesen_US
dc.genreconference papers and proceedings preprintsen_US
dc.identifierdoi:10.13016/M2GH9BD60
dc.identifier.urihttp://hdl.handle.net/11603/12129
dc.language.isoen_USen_US
dc.publisherInstitute of Industrial Engineersen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law
dc.rightsPublic Domain Mark 1.0*
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/*
dc.subjectSemantic weben_US
dc.subjectuncertaintyen_US
dc.subjectintegrationen_US
dc.subjectontologyen_US
dc.subjectBayesian networksen_US
dc.subjectUMBC Ebiquity Research Groupen_US
dc.titleA Probabilistic Framework for Semantic Similarity and Ontology Mappingen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
395.pd.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: