Deep Spatiotemporal Clustering: A Temporal Clustering Approach for Multi-dimensional Climate Data

dc.contributor.authorFaruque, Omar
dc.contributor.authorNji, Francis Ndikum
dc.contributor.authorCham, Mostafa
dc.contributor.authorSalvi, Rohan Mandar
dc.contributor.authorZheng, Xue
dc.contributor.authorWang, Jianwu
dc.date.accessioned2023-05-25T19:59:59Z
dc.date.available2023-05-25T19:59:59Z
dc.date.issued2023-04-27
dc.description.abstractClustering high-dimensional spatiotemporal data using an unsupervised approach is a challenging problem for many data-driven applications. Existing state-of-the-art methods for unsupervised clustering use different similarity and distance functions but focus on either spatial or temporal features of the data. Concentrating on joint deep representation learning of spatial and temporal features, we propose Deep Spatiotemporal Clustering (DSC), a novel algorithm for the temporal clustering of high-dimensional spatiotemporal data using an unsupervised deep learning method. Inspired by the U-net architecture, DSC utilizes an autoencoder integrating CNN-RNN layers to learn latent representations of the spatiotemporal data. DSC also includes a unique layer for cluster assignment on latent representations that uses the Student's t-distribution. By optimizing the clustering loss and data reconstruction loss simultaneously, the algorithm gradually improves clustering assignments and the nonlinear mapping between low-dimensional latent feature space and high-dimensional original data space. A multivariate spatiotemporal climate dataset is used to evaluate the efficacy of the proposed method. Our extensive experiments show our approach outperforms both conventional and deep learning-based unsupervised clustering algorithms. Additionally, we compared the proposed model with its various variants (CNN encoder, CNN autoencoder, CNN-RNN encoder, CNN-RNN autoencoder, etc.) to get insight into using both the CNN and RNN layers in the autoencoder, and our proposed technique outperforms these variants in terms of clustering results.en_US
dc.description.urihttps://arxiv.org/abs/2304.14541en_US
dc.format.extent16 pagesen_US
dc.genrejournal articlesen_US
dc.genrepreprintsen_US
dc.identifierdoi:10.13016/m2aexs-mzpv
dc.identifier.urihttps://doi.org/10.48550/arXiv.2304.14541
dc.identifier.urihttp://hdl.handle.net/11603/28090
dc.language.isoen_USen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Information Systems Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology (JCET)
dc.rightsThis work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.en_US
dc.rightsPublic Domain Mark 1.0*
dc.rights.urihttp://creativecommons.org/publicdomain/mark/1.0/*
dc.titleDeep Spatiotemporal Clustering: A Temporal Clustering Approach for Multi-dimensional Climate Dataen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0002-9933-1170en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2304.14541.pdf
Size:
773.98 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: