Improving Greenland Bed Topography Mapping with Uncertainty-Aware Graph Learning on Sparse Radar Data

dc.contributor.authorTama, Bayu Adhi
dc.contributor.authorAlam, Homayra
dc.contributor.authorCham, Mostafa
dc.contributor.authorFaruque, Omar
dc.contributor.authorWang, Jianwu
dc.contributor.authorJaneja, Vandana
dc.date.accessioned2025-10-22T19:58:16Z
dc.date.issued2025-11-18
dc.description.abstractAccurate maps of Greenland's subglacial bed are essential for sea-level projections, but radar observations are sparse and uneven. We introduce GraphTopoNet, a graph-learning framework that fuses heterogeneous supervision and explicitly models uncertainty via Monte Carlo dropout. Spatial graphs built from surface observables (elevation, velocity, mass balance) are augmented with gradient features and polynomial trends to capture both local variability and broad structure. To handle data gaps, we employ a hybrid loss that combines confidence-weighted radar supervision with dynamically balanced regularization. Applied to three Greenland subregions, GraphTopoNet outperforms interpolation, convolutional, and graph-based baselines, reducing error by up to 60 percent while preserving fine-scale glacial features. The resulting bed maps improve reliability for operational modeling, supporting agencies engaged in climate forecasting and policy. More broadly, GraphTopoNet shows how graph machine learning can convert sparse, uncertain geophysical observations into actionable knowledge at continental scale.
dc.description.urihttp://arxiv.org/abs/2509.08571
dc.format.extent10 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2wii2-13zv
dc.identifier.urihttps://doi.org/10.48550/arXiv.2509.08571
dc.identifier.urihttp://hdl.handle.net/11603/40565
dc.language.isoen
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Imaging Research Center (IRC)
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology (JCET)
dc.relation.ispartofUMBC Center for Real-time Distributed Sensing and Autonomy
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.relation.ispartofUMBC GESTAR II
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Information Systems Department
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Center for Accelerated Real Time Analysis
dc.relation.ispartofiHARP NSF HDR Institute for Harnessing Data and Model Revolution in the Polar Regions
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectUMBC Multi-Data (MData) Lab
dc.subjectUMBC Big Data Analytics Lab
dc.subjectUMBC Cybersecurity Institute
dc.subjectUMBC iHARP NSF HDR Institute for Harnessing Data and Model Revolution in the Polar Regions
dc.titleImproving Greenland Bed Topography Mapping with Uncertainty-Aware Graph Learning on Sparse Radar Data
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-1821-6438
dcterms.creatorhttps://orcid.org/0009-0006-8650-4366
dcterms.creatorhttps://orcid.org/0000-0002-9933-1170
dcterms.creatorhttps://orcid.org/0000-0003-0130-6135

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2509.08571v2.pdf
Size:
13.62 MB
Format:
Adobe Portable Document Format