Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry

dc.contributor.authorZimmermann, Yoel
dc.contributor.authorBazgir, Adib
dc.contributor.authorAfzal, Zartashia
dc.contributor.authorAgbere, Fariha
dc.contributor.authorAi, Qianxiang
dc.contributor.authorAlampara, Nawaf
dc.contributor.authorAl-Feghali, Alexander
dc.contributor.authorAnsari, Mehrad
dc.contributor.authorAntypov, Dmytro
dc.contributor.authorAswad, Amro
dc.contributor.authorBai, Jiaru
dc.contributor.authorBaibakova, Viktoriia
dc.contributor.authorBiswajeet, Devi Dutta
dc.contributor.authorBitzek, Erik
dc.contributor.authorBocarsly, Joshua D.
dc.contributor.authorBorisova, Anna
dc.contributor.authorBran, Andres M.
dc.contributor.authorBrinson, L. Catherine
dc.contributor.authorCalderon, Marcel Moran
dc.contributor.authorCanalicchio, Alessandro
dc.contributor.authorChen, Victor
dc.contributor.authorChiang, Yuan
dc.contributor.authorCirci, Defne
dc.contributor.authorCharmes, Benjamin
dc.contributor.authorChaudhary, Vikrant
dc.contributor.authorChen, Zizhang
dc.contributor.authorChiu, Min-Hsueh
dc.contributor.authorClymo, Judith
dc.contributor.authorDabhadkar, Kedar
dc.contributor.authorDaelman, Nathan
dc.contributor.authorDatar, Archit
dc.contributor.authorJong, Wibe A. de
dc.contributor.authorEvans, Matthew L.
dc.contributor.authorFard, Maryam Ghazizade
dc.contributor.authorFisicaro, Giuseppe
dc.contributor.authorGangan, Abhijeet Sadashiv
dc.contributor.authorGeorge, Janine
dc.contributor.authorGonzalez, Jose D. Cojal
dc.contributor.authorGötte, Michael
dc.contributor.authorGupta, Ankur K.
dc.contributor.authorHarb, Hassan
dc.contributor.authorHong, Pengyu
dc.contributor.authorIbrahim, Abdelrahman
dc.contributor.authorIlyas, Ahmed
dc.contributor.authorImran, Alishba
dc.contributor.authorIshimwe, Kevin
dc.contributor.authorIssa, Ramsey
dc.contributor.authorJablonka, Kevin Maik
dc.contributor.authorJones, Colin
dc.contributor.authorJosephson, Tyler R.
dc.contributor.authorJuhasz, Greg
dc.contributor.authorKapoor, Sarthak
dc.contributor.authorKang, Rongda
dc.contributor.authorKhalighinejad, Ghazal
dc.contributor.authorKhan, Sartaaj
dc.contributor.authorKlawohn, Sascha
dc.contributor.authorKuman, Suneel
dc.contributor.authorLadines, Alvin Noe
dc.contributor.authorLeang, Sarom
dc.contributor.authorLederbauer, Magdalena
dc.contributor.authorSheng-Lun
dc.contributor.authorLiao
dc.contributor.authorLiu, Hao
dc.contributor.authorLiu, Xuefeng
dc.contributor.authorLo, Stanley
dc.contributor.authorMadireddy, Sandeep
dc.contributor.authorMaharana, Piyush Ranjan
dc.contributor.authorMaheshwari, Shagun
dc.contributor.authorMahjoubi, Soroush
dc.contributor.authorMárquez, José A.
dc.contributor.authorMills, Rob
dc.contributor.authorMohanty, Trupti
dc.contributor.authorMohr, Bernadette
dc.contributor.authorMoosavi, Seyed Mohamad
dc.contributor.authorMoßhammer, Alexander
dc.contributor.authorNaghdi, Amirhossein D.
dc.contributor.authorNaik, Aakash
dc.contributor.authorNarykov, Oleksandr
dc.contributor.authorNäsström, Hampus
dc.contributor.authorNguyen, Xuan Vu
dc.contributor.authorNi, Xinyi
dc.contributor.authorO'Connor, Dana
dc.contributor.authorOlayiwola, Teslim
dc.contributor.authorOttomano, Federico
dc.contributor.authorOzhan, Aleyna Beste
dc.contributor.authorPagel, Sebastian
dc.contributor.authorParida, Chiku
dc.contributor.authorPark, Jaehee
dc.contributor.authorPatel, Vraj
dc.contributor.authorPatyukova, Elena
dc.contributor.authorPetersen, Martin Hoffmann
dc.contributor.authorPinto, Luis
dc.contributor.authorPizarro, José M.
dc.contributor.authorPlessers, Dieter
dc.contributor.authorPradhan, Tapashree
dc.contributor.authorPratiush, Utkarsh
dc.contributor.authorPuli, Charishma
dc.contributor.authorQin, Andrew
dc.contributor.authorRajabi, Mahyar
dc.contributor.authorRicci, Francesco
dc.contributor.authorRisch, Elliot
dc.contributor.authorRíos-García, Martiño
dc.contributor.authorRoy, Aritra
dc.contributor.authorRug, Tehseen
dc.contributor.authorSayeed, Hasan M.
dc.contributor.authorScheidgen, Markus
dc.contributor.authorSchilling-Wilhelmi, Mara
dc.contributor.authorSchloz, Marcel
dc.contributor.authorSchöppach, Fabian
dc.contributor.authorSchumann, Julia
dc.contributor.authorSchwaller, Philippe
dc.contributor.authorSchwarting, Marcus
dc.contributor.authorSharlin, Samiha
dc.contributor.authorShen, Kevin
dc.contributor.authorShi, Jiale
dc.contributor.authorSi, Pradip
dc.contributor.authorD'Souza, Jennifer
dc.contributor.authorSparks, Taylor
dc.contributor.authorSudhakar, Suraj
dc.contributor.authorTalirz, Leopold
dc.contributor.authorTang, Dandan
dc.contributor.authorTaran, Olga
dc.contributor.authorTerboven, Carla
dc.contributor.authorTropin, Mark
dc.contributor.authorTsymbal, Anastasiia
dc.contributor.authorUeltzen, Katharina
dc.contributor.authorUnzueta, Pablo Andres
dc.contributor.authorVasan, Archit
dc.contributor.authorVinchurkar, Tirtha
dc.contributor.authorVo, Trung
dc.contributor.authorVogel, Gabriel
dc.contributor.authorVölker, Christoph
dc.contributor.authorWeinreich, Jan
dc.contributor.authorYang, Faradawn
dc.contributor.authorZaki, Mohd
dc.contributor.authorZhang, Chi
dc.contributor.authorZhang, Sylvester
dc.contributor.authorZhang, Weijie
dc.contributor.authorZhu, Ruijie
dc.contributor.authorZhu, Shang
dc.contributor.authorJanssen, Jan
dc.contributor.authorLi, Calvin
dc.contributor.authorFoster, Ian
dc.contributor.authorBlaiszik, Ben
dc.date.accessioned2025-04-23T20:30:40Z
dc.date.available2025-04-23T20:30:40Z
dc.date.issued2025-01-03
dc.description.abstractHere, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.
dc.description.sponsorshipPlanning for this event was supported by NSF Awards #2226419 and #2209892. We would like to thank event sponsors who provided platform credits and prizes for teams, including RadicalAI, Iteratec, Reincarnate, Acceleration Consortium, and Neo4j.
dc.description.urihttp://arxiv.org/abs/2411.15221
dc.format.extent98 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2bej2-ogic
dc.identifier.urihttps://doi.org/10.48550/arXiv.2411.15221
dc.identifier.urihttp://hdl.handle.net/11603/37977
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Chemical, Biochemical & Environmental Engineering Department
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Data Science
dc.rightsAttribution 4.0 International CC BY 4.0 Deed
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.en
dc.subjectCondensed Matter - Materials Science
dc.subjectPhysics - Chemical Physics
dc.subjectComputer Science - Machine Learning
dc.titleReflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0002-0100-0227
dcterms.creatorhttps://orcid.org/0000-0002-6379-9206

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2411.15221v2.pdf
Size:
17.88 MB
Format:
Adobe Portable Document Format