Assessment of Simple and Alternative Bayesian Ranking Methods Utilizing Parallel Computing
Loading...
Links to Files
Permanent Link
Author/Creator ORCID
Date
2011
Type of Work
Department
Program
Citation of Original Publication
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Abstract
The U.S. Census Bureau (USCB) assists the federal government in distributing approximately $400 billion of aid by providing a complete ranking of the states according to certain criteria, such as average poverty level. It is imperative that this ranking
be as accurate as possible in order to ensure the fairness of the allocation of funds. Currently, the USCB ranks states based on point estimates of their true poverty level. Dr. Klein and Dr. Wright of the USCB have compared the performance of this method
against more sophisticated procedures in simulation trials, but have found that they do not consistently outperform the existing method. We investigate this phenomenon by revisiting some of these procedures, and we expand on this work to produce new
ranking algorithms. We utilize parallel programming to expedite Dr. Klein’s procedures. In addition, we specify two new prior distributions on the population means — using previous years’ census data as well as regression. We discuss the results of our
methods in conjunction with Klein and Wright’s corresponding simulation results. In our final report, we compare the performance of our techniques to that of the USCB’s current method and show the resulting state ranks for each procedure.