Entity Type Recognition for Heterogeneous Semantic Graphs

dc.contributor.authorSleeman, Jennifer
dc.contributor.authorFinin, Tim
dc.contributor.authorJoshi, Anupam
dc.date.accessioned2018-11-01T16:23:45Z
dc.date.available2018-11-01T16:23:45Z
dc.date.issued2015-03-01
dc.description.abstractWe describe an approach for identifying fine-grained entity types in heterogeneous data graphs that is effective for unstructured data or when the underlying ontologies or semantic schemas are unknown. Identifying fine-grained entity types, rather than a few high-level types, supports coreference resolution in heterogeneous graphs by reducing the number of possible coreference relations that must be considered. Big Data problems that involve integrating data from multiple sources can benefit from our approach when the data's ontologies are unknown, inaccessible or semantically trivial. For such cases, we use supervised machine learning to map entity attributes and relations to a known set of attributes and relations from appropriate background knowledge bases to predict instance entity types. We evaluated this approach in experiments on data from DBpedia, Freebase and Arnetminer using DBpedia as the background knowledge base.en_US
dc.description.urihttps://onlinelibrary.wiley.com/doi/10.1609/aimag.v36i1.2569en_US
dc.format.extent9 pagesen_US
dc.genrejournal articlesen_US
dc.genrepreprints
dc.identifierdoi:10.13016/M2DR2PC98
dc.identifier.citationSleeman, J., Finin, T. and Joshi, A. (2015), Entity Type Recognition for Heterogeneous Semantic Graphs. AI Magazine, 36: 75-86. https://doi.org/10.1609/aimag.v36i1.2569en_US
dc.identifier.urihttp://hdl.handle.net/11603/11825
dc.identifier.urihttps://doi.org/10.1609/aimag.v36i1.2569
dc.language.isoen_USen_US
dc.publisherWileyen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis is the pre-peer reviewed version of the following article: Sleeman, J., Finin, T. and Joshi, A. (2015), Entity Type Recognition for Heterogeneous Semantic Graphs. AI Magazine, 36: 75-86. https://doi.org/10.1609/aimag.v36i1.2569, which has been published in final form at https://doi.org/10.1609/aimag.v36i1.2569. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
dc.subjectbig dataen_US
dc.subjectsemantic Weben_US
dc.subjectEntityen_US
dc.subjectRecognitionen_US
dc.subjectSemantic Graphsen_US
dc.subjectUMBC Ebiquity Research Groupen_US
dc.subjectResource Description Framework (RDF)en_US
dc.titleEntity Type Recognition for Heterogeneous Semantic Graphsen_US
dc.typeTexten_US
dcterms.creatorhttps://orcid.org/0000-0002-8934-5587
dcterms.creatorhttps://orcid.org/0000-0002-6593-1792
dcterms.creatorhttps://orcid.org/0000-0002-8641-3193

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
713.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: