Multi-modal data fusion using source separation: Application to medical imaging

dc.contributor.authorAdali, Tulay
dc.contributor.authorLevin-Schwartz, Yuri
dc.contributor.authorCalhoun, Vince D.
dc.date.accessioned2019-02-25T14:55:01Z
dc.date.available2019-02-25T14:55:01Z
dc.date.issued2015-08-17
dc.description.abstractThe Joint ICA (jICA) and the Transposed IVA (tIVA) models are two effective solutions based on blind source separation that enable fusion of data from multiple modalities in a symmetric and fully multivariate manner. In [1], their properties and the major issues in their implementation are discussed in detail. In this accompanying paper, we consider the application of these two models to fusion of multi-modal medical imaging data—functional magnetic resonance imaging (fMRI), structural MRI (sMRI), and electroencephalography (EEG) data collected from a group of healthy controls and patients with schizophrenia performing an auditory oddball task. We show how both models can be used to identify a set of components that report on differences between the two groups, jointly, for all the modalities used in the study. We discuss the importance of algorithm and order selection as well as trade-offs involved in the selection of one model over another. We note that for the selected dataset, especially given the limited number of subjects available for the study, jICA provides a more desirable solution, however the use of an ICA algorithm that uses flexible density matching provides advantages over the most widely used algorithm, Infomax, for the problem.en_US
dc.description.sponsorshipThis work was supported by the NSF-IIS under Grant 1017718, NSF-CCF under Grant 1117056, NIH under Grant 2R01EB000840, and NIH COBRE under Grant P20GM103472.en_US
dc.description.urihttps://ieeexplore.ieee.org/document/7206517?arnumber=7206517en_US
dc.format.extent10 pagesen_US
dc.genreconference papers and proceedings postprintsen_US
dc.identifierdoi:10.13016/m2odvu-zimf
dc.identifier.citationTülay Adali , Yuri Levin-Schwartz, Vince D. Calhoun, Multimodal Data Fusion Using Source Separation: Two Effective Models Based on ICA and IVA and Their Properties, Proceedings of the IEEE ,Volume: 103 , Issue: 9 , Sept. 2015, DOI: 10.1109/JPROC.2015.2461601en_US
dc.identifier.urihttps://doi.org/10.1109/JPROC.2015.2461601
dc.identifier.urihttp://hdl.handle.net/11603/12853
dc.language.isoen_USen_US
dc.publisherIEEEen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Faculty Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.rights© 2015 IEEE
dc.subjectdata fusionen_US
dc.subjectmultimodalityen_US
dc.subjectindependent component analysis (ICA)en_US
dc.subjectindependent vector analysis (IVA)en_US
dc.subjectMRI
dc.subjectfunctional magnetic resonance imaging (fMRI)
dc.subjectelectroencephalography (EEG)
dc.subjectmedical imaging
dc.subjectsource separation
dc.titleMulti-modal data fusion using source separation: Application to medical imagingen_US
dc.typeTexten_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Adali_part2.final_webcopy.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: