The Optimal Relaxation Parameter for the SOR Method Applied to a Classical Model Problem

dc.contributor.authorYang, Shiming
dc.contributor.authorGobbert, Matthias
dc.date.accessioned2025-08-13T20:14:35Z
dc.date.issued2007
dc.description.abstractThe successive overrelaxation (SOR) method is an example of a classical iterative method for the approximate solution of a system of linear equations. Its iteration matrix depends on a relaxation parameter. There is no explicit formula for the optimal relaxation parameter in terms of properties of the system matrix of a general system matrix. However, for the classical model problem of a finite difference approximation to the Poisson equation, a formula for the optimal relaxation parameter can be derived. Beyond this model problem, this result is also useful as guidance for the choice of the parameter in other problems. This paper presents the detailed derivation of the formula for the optimal relaxation parameter for the model problem and extends the well-known one- and two-dimensional results to higher dimensions
dc.description.urihttps://userpages.umbc.edu/~gobbert/papers/YangGobbert2007SOR.pdf
dc.format.extent19 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2cwov-7f6z
dc.identifier.urihttp://hdl.handle.net/11603/39787
dc.language.isoen
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Mathematics and Statistics Department
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.titleThe Optimal Relaxation Parameter for the SOR Method Applied to a Classical Model Problem
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-1745-2292
dcterms.creatorhttps://orcid.org/0000-0003-0338-4268

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
YangGobbert2007SOR.pdf
Size:
395.44 KB
Format:
Adobe Portable Document Format