Attention-Guided Deep Adversarial Temporal Subspace Clustering (A-DATSC) Model for multivariate spatiotemporal data

dc.contributor.authorNji, Francis Ndikum
dc.contributor.authorJaneja, Vandana
dc.contributor.authorWang, Jianwu
dc.date.accessioned2025-12-15T14:58:47Z
dc.date.issued2025-10-20
dc.description33rd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2025), Monday November 3 - Thursday November 6, 2025, Minneapolis, MN, USA
dc.description.abstractDeep subspace clustering models are vital for applications such as snowmelt detection, sea ice tracking, crop health monitoring, infectious disease modeling, network load prediction, and land-use planning, where multivariate spatiotemporal data exhibit complex temporal dependencies and reside on multiple nonlinear manifolds beyond the capability of traditional clustering methods. These models project data into a latent space where samples lie in linear subspaces and exploit the self-expressiveness property to uncover intrinsic relationships. Despite their success, existing methods face major limitations: they use shallow autoencoders that ignore clustering errors, emphasize global features while neglecting local structure, fail to model long-range dependencies and positional information, and are rarely applied to 4D spatiotemporal data. To address these issues, we propose A-DATSC (Attention-Guided Deep Adversarial Temporal Subspace Clustering), a model combining a deep subspace clustering generator and a quality-verifying discriminator. The generator, inspired by U-Net, preserves spatial and temporal integrity through stacked TimeDistributed ConvLSTM2D layers, reducing parameters and enhancing generalization. A graph attention transformer based self-expressive network captures local spatial relationships, global dependencies, and both short- and long-range correlations. Experiments on three real-world multivariate spatiotemporal datasets show that A-DATSC achieves substantially superior clustering performance compared to state-of-the-art deep subspace clustering models.
dc.description.urihttp://arxiv.org/abs/2510.18004
dc.format.extent8 pages
dc.genreconference papers and proceedings
dc.genrepreprints
dc.identifierdoi:10.13016/m2jzwc-skus
dc.identifier.urihttps://doi.org/10.48550/arXiv.2510.18004
dc.identifier.urihttp://hdl.handle.net/11603/41271
dc.language.isoen
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.relation.ispartofUMBC GESTAR II
dc.relation.ispartofUMBC Information Systems Department
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Center for Accelerated Real Time Analysis
dc.relation.ispartofUMBC Center for Real-time Distributed Sensing and Autonomy
dc.relation.ispartofUMBC Joint Center for Earth Systems Technology (JCET)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectComputer Science - Machine Learning
dc.subjectUMBC Cybersecurity Institute
dc.subjectUMBC Multi-Data (MData) Lab
dc.subjectUMBC Big Data Analytics Lab
dc.titleAttention-Guided Deep Adversarial Temporal Subspace Clustering (A-DATSC) Model for multivariate spatiotemporal data
dc.typeText
dcterms.creatorhttps://orcid.org/0009-0009-6559-4659
dcterms.creatorhttps://orcid.org/0000-0003-0130-6135
dcterms.creatorhttps://orcid.org/0000-0002-9933-1170

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2510.18004v1.pdf
Size:
812.6 KB
Format:
Adobe Portable Document Format