Photodetector Performance Prediction with Machine Learning

dc.contributor.authorSimsek, Ergun
dc.contributor.authorMahabadi, Seyed Ehsan Jamali
dc.contributor.authorCarruthers, Thomas F.
dc.contributor.authorMenyuk, Curtis
dc.date.accessioned2025-06-17T14:46:05Z
dc.date.available2025-06-17T14:46:05Z
dc.date.issued2021-11-01
dc.descriptionFrontiers in Optics 2021, Washington, DC United States, 1–4 November 2021
dc.description.abstractFour machine learning algorithms are tested to predict the performance metrics of modified uni-traveling carrier photodetectors from their design parameters. The highest accuracy (>94%) is achieved with artificial neural networks.
dc.description.urihttps://opg.optica.org/abstract.cfm?uri=FiO-2021-FTu6C.4
dc.format.extent2 pages
dc.genreconference papers and proceedings
dc.identifierdoi:10.13016/m2zzko-brg6
dc.identifier.citationSimsek, Ergun, Seyed Ehsan Jamali Mahabadi, Thomas F. Carruthers, and Curtis R. Menyuk. "Photodetector Performance Prediction with Machine Learning" In Frontiers in Optics + Laser Science 2021 (2021), Paper FTu6C.4, FTu6C.4. Optica Publishing Group, 2021. https://doi.org/10.1364/FIO.2021.FTu6C.4.
dc.identifier.urihttps://doi.org/10.1364/FIO.2021.FTu6C.4
dc.identifier.urihttp://hdl.handle.net/11603/38991
dc.language.isoen_US
dc.publisherOptica
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.relation.ispartofUMBC Data Science
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
dc.subjectNeural networks
dc.subjectUMBC Optical Fiber Communications Laboratory
dc.subjectUMBC High Performance Computing Facility (HPCF)
dc.subjectPhase noise
dc.subjectUMBC Computational Photonics Laboratory
dc.subjectUltrashort pulses
dc.subjectDistortion
dc.subjectPhotodetectors
dc.subjectMachine learning
dc.titlePhotodetector Performance Prediction with Machine Learning
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0001-9075-7071
dcterms.creatorhttps://orcid.org/0000-0003-4718-6976
dcterms.creatorhttps://orcid.org/0000-0002-5002-1657
dcterms.creatorhttps://orcid.org/0000-0003-0269-8433

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fio2021ftu6c.4.pdf
Size:
892.63 KB
Format:
Adobe Portable Document Format