Photodetector Performance Prediction with Machine Learning
dc.contributor.author | Simsek, Ergun | |
dc.contributor.author | Mahabadi, Seyed Ehsan Jamali | |
dc.contributor.author | Carruthers, Thomas F. | |
dc.contributor.author | Menyuk, Curtis | |
dc.date.accessioned | 2025-06-17T14:46:05Z | |
dc.date.available | 2025-06-17T14:46:05Z | |
dc.date.issued | 2021-11-01 | |
dc.description | Frontiers in Optics 2021, Washington, DC United States, 1–4 November 2021 | |
dc.description.abstract | Four machine learning algorithms are tested to predict the performance metrics of modified uni-traveling carrier photodetectors from their design parameters. The highest accuracy (>94%) is achieved with artificial neural networks. | |
dc.description.uri | https://opg.optica.org/abstract.cfm?uri=FiO-2021-FTu6C.4 | |
dc.format.extent | 2 pages | |
dc.genre | conference papers and proceedings | |
dc.identifier | doi:10.13016/m2zzko-brg6 | |
dc.identifier.citation | Simsek, Ergun, Seyed Ehsan Jamali Mahabadi, Thomas F. Carruthers, and Curtis R. Menyuk. "Photodetector Performance Prediction with Machine Learning" In Frontiers in Optics + Laser Science 2021 (2021), Paper FTu6C.4, FTu6C.4. Optica Publishing Group, 2021. https://doi.org/10.1364/FIO.2021.FTu6C.4. | |
dc.identifier.uri | https://doi.org/10.1364/FIO.2021.FTu6C.4 | |
dc.identifier.uri | http://hdl.handle.net/11603/38991 | |
dc.language.iso | en_US | |
dc.publisher | Optica | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Student Collection | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.relation.ispartof | UMBC Computer Science and Electrical Engineering Department | |
dc.relation.ispartof | UMBC Data Science | |
dc.rights | This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author. | |
dc.subject | Neural networks | |
dc.subject | UMBC Optical Fiber Communications Laboratory | |
dc.subject | UMBC High Performance Computing Facility (HPCF) | |
dc.subject | Phase noise | |
dc.subject | UMBC Computational Photonics Laboratory | |
dc.subject | Ultrashort pulses | |
dc.subject | Distortion | |
dc.subject | Photodetectors | |
dc.subject | Machine learning | |
dc.title | Photodetector Performance Prediction with Machine Learning | |
dc.type | Text | |
dcterms.creator | https://orcid.org/0000-0001-9075-7071 | |
dcterms.creator | https://orcid.org/0000-0003-4718-6976 | |
dcterms.creator | https://orcid.org/0000-0002-5002-1657 | |
dcterms.creator | https://orcid.org/0000-0003-0269-8433 |
Files
Original bundle
1 - 1 of 1