Generating Digital Twin models using Knowledge Graphs for Industrial Production Lines
dc.contributor.author | Banerjee, Agniva | |
dc.contributor.author | Dalal, Raka | |
dc.contributor.author | Mittal, Sudip | |
dc.contributor.author | Joshi, Karuna Pande | |
dc.date.accessioned | 2018-10-18T13:26:41Z | |
dc.date.available | 2018-10-18T13:26:41Z | |
dc.date.issued | 2017-06-25 | |
dc.description | Workshop on Industrial Knowledge Graphs, co-located with the 9th International ACM Web Science Conference 2017 | en_US |
dc.description.abstract | Digital Twin models are computerized clones of physical assets that can be used for in-depth analysis. Industrial production lines tend to have multiple sensors to generate near real-time status information for production. Industrial Internet of Things datasets are difficult to analyze and infer valuable insights such as points of failure, estimated overhead. etc. In this paper we introduce a simple way of formalizing knowledge as digital twin models coming from sensors in industrial production lines. We present a way on to extract and infer knowledge from large scale production line data, and enhance manufacturing process management with reasoning capabilities, by introducing a semantic query mechanism. Our system primarily utilizes a graph-based query language equivalent to conjunctive queries and has been enriched with inference rules. | en_US |
dc.description.sponsorship | The research in this paper was supported partially by the grants from GE Global Research Center and partially by the grants from International Business Machines Corporation (commonly referred to as IBM). | en_US |
dc.description.uri | https://dl.acm.org/citation.cfm?id=3162383 | en_US |
dc.format.extent | 6 pages | en_US |
dc.genre | conference paper pre-print | en_US |
dc.identifier | doi:10.13016/M2RF5KK2G | |
dc.identifier.citation | Agniva Banerjee, Raka Dalal, Sudip Mittal, Karuna Pande Joshi, Generating Digital Twin models using Knowledge Graphs for Industrial Production Lines, Workshop on Industrial Knowledge Graphs, co-located with the 9th International ACM Web Science Conference 2017,DOI: 10.1145/3091478.3162383 | en_US |
dc.identifier.uri | 10.1145/3091478.3162383 | |
dc.identifier.uri | http://hdl.handle.net/11603/11592 | |
dc.language.iso | en_US | en_US |
dc.publisher | ACM Publications | en_US |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Computer Science and Electrical Engineering Department Collection | |
dc.relation.ispartof | UMBC Faculty Collection | |
dc.relation.ispartof | UMBC Student Collection | |
dc.relation.ispartof | UMBC Information Systems Department | |
dc.rights | This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author. | |
dc.subject | Digital Twin | en_US |
dc.subject | Knowledge Graph | en_US |
dc.subject | Big Data | en_US |
dc.subject | Industrial Internet of Things | en_US |
dc.subject | Semantic Web | en_US |
dc.subject | UMBC Ebiquity Research Group | en_US |
dc.title | Generating Digital Twin models using Knowledge Graphs for Industrial Production Lines | en_US |
dc.type | Text | en_US |