eCDANs: Efficient Temporal Causal Discovery from Autocorrelated and Non-stationary Data (Student Abstract)
Links to Files
Author/Creator
Author/Creator ORCID
Date
Type of Work
Department
Program
Citation of Original Publication
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Abstract
Conventional temporal causal discovery (CD) methods suffer from high dimensionality, fail to identify lagged causal relationships, and often ignore dynamics in relations. In this study, we present a novel constraint-based CD approach for autocorrelated and non-stationary time series data (eCDANs) capable of detecting lagged and contemporaneous causal relationships along with temporal changes. eCDANs addresses high dimensionality by optimizing the conditioning sets while conducting conditional independence (CI) tests and identifies the changes in causal relations by introducing a surrogate variable to represent time dependency. Experiments on synthetic and real-world data show that eCDANs can identify time influence and outperform the baselines.
