Using Style Ambiguity Loss to Improve Aesthetics of Diffusion Models

dc.contributor.authorBaker, James
dc.date.accessioned2024-11-14T15:18:37Z
dc.date.available2024-11-14T15:18:37Z
dc.date.issued2024-10-02
dc.description.abstractTeaching text-to-image models to be creative involves using style ambiguity loss. In this work, we explore using the style ambiguity training objective, used to approximate creativity, on a diffusion model. We then experiment with forms of style ambiguity loss that do not require training a classifier or a labeled dataset, and find that the models trained with style ambiguity loss can generate better images than the baseline diffusion models and GANs. Code is available at https://github.com/jamesBaker361/clipcreate.
dc.description.urihttp://arxiv.org/abs/2410.02055
dc.format.extent27 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m26cjd-odma
dc.identifier.urihttps://doi.org/10.48550/arXiv.2410.02055
dc.identifier.urihttp://hdl.handle.net/11603/36943
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.rightsAttribution 4.0 International CC BY 4.0 Deed
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectComputer Science - Computer Vision and Pattern Recognition
dc.titleUsing Style Ambiguity Loss to Improve Aesthetics of Diffusion Models
dc.typeText

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2410.02055v1.pdf
Size:
22.77 MB
Format:
Adobe Portable Document Format