BRAT: Bonus oRthogonAl Token for Architecture Agnostic Textual Inversion

dc.contributor.authorBaker, James
dc.date.accessioned2024-09-04T19:58:23Z
dc.date.available2024-09-04T19:58:23Z
dc.date.issued2024-08-08
dc.description.abstractTextual Inversion remains a popular method for personalizing diffusion models, in order to teach models new subjects and styles. We note that textual inversion has been underexplored using alternatives to the UNet, and experiment with textual inversion with a vision transformer. We also seek to optimize textual inversion using a strategy that does not require explicit use of the UNet and its idiosyncratic layers, so we add bonus tokens and enforce orthogonality. We find the use of the bonus token improves adherence to the source images and the use of the vision transformer improves adherence to the prompt. Code is available at https://github.com/jamesBaker361/tex_inv_plus.
dc.description.urihttp://arxiv.org/abs/2408.04785
dc.format.extent23 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m2q2xe-h3uq
dc.identifier.urihttps://doi.org/10.48550/arXiv.2408.04785
dc.identifier.urihttp://hdl.handle.net/11603/35954
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department
dc.relation.ispartofUMBC Student Collection
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectComputer Science - Computer Vision and Pattern Recognition
dc.titleBRAT: Bonus oRthogonAl Token for Architecture Agnostic Textual Inversion
dc.typeText

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2408.04785v1.pdf
Size:
10.88 MB
Format:
Adobe Portable Document Format