BRAT: Bonus oRthogonAl Token for Architecture Agnostic Textual Inversion
dc.contributor.author | Baker, James | |
dc.date.accessioned | 2024-09-04T19:58:23Z | |
dc.date.available | 2024-09-04T19:58:23Z | |
dc.date.issued | 2024-08-08 | |
dc.description.abstract | Textual Inversion remains a popular method for personalizing diffusion models, in order to teach models new subjects and styles. We note that textual inversion has been underexplored using alternatives to the UNet, and experiment with textual inversion with a vision transformer. We also seek to optimize textual inversion using a strategy that does not require explicit use of the UNet and its idiosyncratic layers, so we add bonus tokens and enforce orthogonality. We find the use of the bonus token improves adherence to the source images and the use of the vision transformer improves adherence to the prompt. Code is available at https://github.com/jamesBaker361/tex_inv_plus. | |
dc.description.uri | http://arxiv.org/abs/2408.04785 | |
dc.format.extent | 23 pages | |
dc.genre | journal articles | |
dc.genre | preprints | |
dc.identifier | doi:10.13016/m2q2xe-h3uq | |
dc.identifier.uri | https://doi.org/10.48550/arXiv.2408.04785 | |
dc.identifier.uri | http://hdl.handle.net/11603/35954 | |
dc.language.iso | en_US | |
dc.relation.isAvailableAt | The University of Maryland, Baltimore County (UMBC) | |
dc.relation.ispartof | UMBC Computer Science and Electrical Engineering Department | |
dc.relation.ispartof | UMBC Student Collection | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Computer Science - Computer Vision and Pattern Recognition | |
dc.title | BRAT: Bonus oRthogonAl Token for Architecture Agnostic Textual Inversion | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1