Minimax Lower Bound and Optimal Estimation of Convex Functions in the Sup-Norm

dc.contributor.authorLebair, Teresa M.
dc.contributor.authorShen, Jinglai
dc.contributor.authorWang, Xiao
dc.date.accessioned2024-08-27T20:38:18Z
dc.date.available2024-08-27T20:38:18Z
dc.date.issued2017-07
dc.description.abstractEstimation of convex functions finds broad applications in science and engineering; however, the convex shape constraint complicates the asymptotic performance analysis of such estimators. This technical note is devoted to the minimax optimal estimation of univariate convex functions in a given Hölder class. Particularly, a minimax lower bound in the supremum norm (or simply sup-norm) is established by constructing a novel family of piecewise quadratic convex functions in the Hölder class. This result, along with a recent result on the minimax upper bound, gives rise to the optimal rate of convergence for the minimax sup-norm risk of convex functions with the Hölder order between one and two. The present technical note provides the first rigorous justification of the optimal minimax risk for convex estimation on the entire interval of interest in the sup-norm.
dc.description.urihttps://ieeexplore.ieee.org/document/7572951
dc.format.extent6 pages
dc.genrejournal articles
dc.genrepreprints
dc.identifierdoi:10.13016/m20h50-tgvs
dc.identifier.citationLebair, Teresa M., Jinglai Shen, and Xiao Wang. “Minimax Lower Bound and Optimal Estimation of Convex Functions in the Sup-Norm.” IEEE Transactions on Automatic Control 62, no. 7 (July 2017): 3482–87. https://doi.org/10.1109/TAC.2016.2612543.
dc.identifier.urihttps://doi.org/10.1109/TAC.2016.2612543
dc.identifier.urihttp://hdl.handle.net/11603/35845
dc.language.isoen_US
dc.publisherIEEE
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Student Collection
dc.relation.ispartofUMBC Mathematics and Statistics Department
dc.rights© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.subjectConvergence
dc.subjectConvex functions
dc.subjectConvex regression
dc.subjectEstimation
dc.subjectManganese
dc.subjectminimax theory
dc.subjectShape
dc.subjectshape constrained estimation
dc.subjectSplines (mathematics)
dc.subjectsup-norm risk
dc.subjectUpper bound
dc.titleMinimax Lower Bound and Optimal Estimation of Convex Functions in the Sup-Norm
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-2172-4182

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lowerbd_rev16_2col03.dvi.pdf
Size:
525.22 KB
Format:
Adobe Portable Document Format