NICER X-Ray Observations of Eta Carinae during Its Most Recent Periastron Passage

Department

Program

Citation of Original Publication

David Espinoza-Galeas et al. “NICER X-Ray Observations of Eta Carinae during Its Most Recent Periastron Passage.” ApJ 933 136 (8 July 2022). https://doi.org/10.3847/1538-4357/ac69ce

Rights

Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.

Subjects

Abstract

We report high-precision X-ray monitoring observations in the 0.4–10 keV band of the luminous, long-period colliding wind binary Eta Carinae, up to and through its most recent X-ray minimum/periastron passage in 2020 February. Eta Carinae reached its observed maximum X-ray flux on 2020 January 7, at a flux level of 3.30 ×10−10 ergs s−1 cm−2, followed by a rapid plunge to its observed minimum flux, 0.03 × 10−10 ergs s−1 cm−2, near 2020 February 17. The NICER observations show an X-ray recovery from the minimum of only ∼16 days, the shortest X-ray minimum observed so far. We provide new constraints for the "deep" and "shallow" minimum intervals. Variations in the characteristic X-ray temperatures of the hottest observed X-ray emission indicate that the apex of the wind–wind "bow shock" enters the companion's wind acceleration zone about 81 days before the start of the X-ray minimum. There is a steplike increase in column density just before the X-ray minimum, probably associated with the presence of dense clumps near the shock apex. During the recovery and after, the column density shows a smooth decline, which agrees with previous NH measurements made by Swift at the same orbital phase, indicating that the changes in the mass-loss rate are only a few percent over the two cycles. Finally, we use the variations in the X-ray flux of the outer ejecta seen by NICER to derive a kinetic X-ray luminosity of the ejecta of ∼1041 ergs s−1 near the time of the "Great Eruption."