NICER X-Ray Observations of Eta Carinae during Its Most Recent Periastron Passage

Department

Program

Citation of Original Publication

David Espinoza-Galeas et al. “NICER X-Ray Observations of Eta Carinae during Its Most Recent Periastron Passage.” ApJ 933 136 (8 July 2022). https://doi.org/10.3847/1538-4357/ac69ce

Rights

This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
Public Domain Mark 1.0

Subjects

Abstract

We report high-precision X-ray monitoring observations in the 0.4–10 keV band of the luminous, long-period colliding wind binary Eta Carinae, up to and through its most recent X-ray minimum/periastron passage in 2020 February. Eta Carinae reached its observed maximum X-ray flux on 2020 January 7, at a flux level of 3.30 ×10−10 ergs s−1 cm−2, followed by a rapid plunge to its observed minimum flux, 0.03 × 10−10 ergs s−1 cm−2, near 2020 February 17. The NICER observations show an X-ray recovery from the minimum of only ∼16 days, the shortest X-ray minimum observed so far. We provide new constraints for the "deep" and "shallow" minimum intervals. Variations in the characteristic X-ray temperatures of the hottest observed X-ray emission indicate that the apex of the wind–wind "bow shock" enters the companion's wind acceleration zone about 81 days before the start of the X-ray minimum. There is a steplike increase in column density just before the X-ray minimum, probably associated with the presence of dense clumps near the shock apex. During the recovery and after, the column density shows a smooth decline, which agrees with previous NH measurements made by Swift at the same orbital phase, indicating that the changes in the mass-loss rate are only a few percent over the two cycles. Finally, we use the variations in the X-ray flux of the outer ejecta seen by NICER to derive a kinetic X-ray luminosity of the ejecta of ∼1041 ergs s−1 near the time of the "Great Eruption."