SymRAG: Efficient Neuro-Symbolic Retrieval Through Adaptive Query Routing

dc.contributor.authorHakim, Safayat Bin
dc.contributor.authorAdil, Muhammad
dc.contributor.authorVelasquez, Alvaro
dc.contributor.authorSong, Houbing
dc.date.accessioned2025-07-09T17:54:53Z
dc.date.issued2025-07-12
dc.description2025 19th Conference on Neurosymbolic Learning and Reasoning, September 8-10, 2025, Santa Cruz, CA
dc.description.abstractCurrent Retrieval-Augmented Generation systems use uniform processing, causing in efficiency as simple queries consume resources similar to complex multi-hop tasks. We present SymRAG, a framework that introduces adaptive query routing via real-time complexity and load assessment to select symbolic, neural, or hybrid pathways. SymRAG’s neuro-symbolic approach adjusts computational pathways based on both query characteristics and system load, enabling efficient resource allocation across diverse query types. By combining linguistic and structural query properties with system load metrics, SymRAG allocates resources proportional to reasoning requirements. Evaluated on 2,000 queries across HotpotQA (multi-hop reasoning) and DROP (discrete reasoning) using Llama-3.2- 3B and Mistral-7B models, SymRAG achieves competitive accuracy (97.6–100.0% exact match) with efficient resource utilization (3.6–6.2% CPU utilization, 0.985–3.165s processing). Disabling adaptive routing increases processing time by 169–1151%, showing its significance for complex models. These results suggest adaptive computation strategies are more sustainable and scalable for hybrid AI systems that use dynamic routing and neuro-symbolic frameworks.
dc.description.urihttps://arxiv.org/abs/2506.12981
dc.format.extent25 pages
dc.genrejournal articles
dc.genrepostprints
dc.identifierdoi:10.13016/m2nr6x-zk7b
dc.identifier.urihttp://hdl.handle.net/11603/39231
dc.identifier.urihttps://doi.org/10.48550/arXiv.2506.12981
dc.language.isoen_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Faculty Collection
dc.relation.ispartofUMBC Information Systems Department
dc.relation.ispartofUMBC Student Collection
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectUMBC Security and Optimization for Networked Globe Laboratory (SONG Lab)
dc.subjectComputer Science - Artificial Intelligence
dc.subjectComputer Science - Computation and Language
dc.subjectComputer Science - Information Retrieval
dc.titleSymRAG: Efficient Neuro-Symbolic Retrieval Through Adaptive Query Routing
dc.typeText
dcterms.creatorhttps://orcid.org/0000-0003-2631-9223

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2506.12981v2.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format