BACON: A fully explainable AI model with graded logic for decision making problems

Department

Program

Citation of Original Publication

Rights

Attribution 4.0 International

Abstract

As machine learning models and autonomous agents are increasingly deployed in high-stakes, real-world domains such as healthcare, security, finance, and robotics, the need for transparent and trustworthy explanations has become critical. To ensure end-to-end transparency of AI decisions, we need models that are not only accurate but also fully explainable and human-tunable. We introduce BACON, a novel framework for automatically training explainable AI models for decision making problems using graded logic. BACON achieves high predictive accuracy while offering full structural transparency and precise, logic-based symbolic explanations, enabling effective human-AI collaboration and expert-guided refinement. We evaluate BACON with a diverse set of scenarios: classic Boolean approximation, Iris flower classification, house purchasing decisions and breast cancer diagnosis. In each case, BACON provides high-performance models while producing compact, human-verifiable decision logic. These results demonstrate BACON's potential as a practical and principled approach for delivering crisp, trustworthy explainable AI.