Beyond the Heisenberg uncertainty
Author/Creator
Author/Creator ORCID
Date
Type of Work
Department
Program
Citation of Original Publication
D’Angelo, Milena, and Yanhua Shih. “Beyond the Heisenberg Uncertainty.” Quantum Communications and Quantum Imaging II 5551 (October 2004): 35–49. https://doi.org/10.1117/12.561455.
Rights
©2004 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited
Subjects
Abstract
Following Einstein, Podolsky, and Rosen (EPR) original argument, we derive a pair of inequalities for the uncertainties in the sum of the momenta and in the difference of the positions of an entangled two-particle system. We prove that only entangled systems can satisfy both EPR-inequalities, in violation of the limits imposed by classical statistics. We propose an operational approach that allows applying the EPR inequalities to two-photon systems, as well. In particular, we demonstrate a scheme that allows implementing the EPR gedanken-experiment and verifying the EPR inequalities on systems of pairs of photons. We report the experimental results obtained in this kind of quantum interference and imaging experiment: SPDC two-photon system satisfies both EPR inequalities. The experimental verification of the EPR inequalities represents a practical way to experimentally distinguish entanglement from classical correlation in momentum and/or position variables for systems of two particles/photons. We emphasize the practical consequences of the EPR inequalities: only entanglement allows one to go beyond the limitations imposed by Heisenberg uncertainty on systems of classically correlated particles/photons. In this context we review a recent experiment of two-photon diffraction and quantum lithography.
