S-asymptotically ω-periodic Functions and Sequences and Applications to Evolution Equations
dc.contributor.advisor | Cohen, Marshall M. | |
dc.contributor.advisor | Pankov, Alexander | |
dc.contributor.advisor | Ziyadi, Najat | |
dc.contributor.advisor | Toni, Bourama | |
dc.contributor.author | Brindle, Darin Orrie | |
dc.contributor.department | Mathematics | en_US |
dc.contributor.program | Doctor of Philosophy | en_US |
dc.date.accessioned | 2020-03-27T00:13:13Z | |
dc.date.available | 2020-03-27T00:13:13Z | |
dc.date.issued | 2019-10-25 | |
dc.description.abstract | The contribution of this dissertation is threefold: First, we investigate further properties of S-asymptotically $\omega$-periodic functions, a concept that was introduced in 2008. Second, we introduce the new concept of S-asymptotically $\omega$-periodic sequences. Finally we use the results to study S-asymptotically $\omega$-periodic solutions to some evolution equations. The first equation is the general abstract semilinear integrodifferential equation $u'(t)=Au(t)+\int_{0}^{t}B(t-\xi)u(\xi)d\xi+f(t,u(t)),\;\;t\geq 0$ with nonlocal conditions $u(0)=u_0 + g(u)$ in a general Banach space $(X, \| \cdot \|)$. The second is the semilinear fractional differential equation $D_t^\alpha u(t)=Au(t)+D_t^{\alpha-1} f(t,u(t)),\;\; t\geq 0$ with non-local conditions $u(0)=u_0 + g(u)$ where $D_t^\alpha(\cdot)$ ($1< \alpha < 2,$) is the Riemann-Liouville derivative, $A: D(A) \subset X \to X$ is a linear densely defined operator of sectorial type on a complex Banach space $X$, $f:\R^+\times X\to X$ is S-asymptotically $\omega$-periodic with respect to the first variable. The results obtained are new even in the context of asymptotically $\omega$-periodic functions. An example to fractional relaxation-oscillation equations is given. Also, in this work, we prove some properties of S-asymptotically $\omega$-periodic sequences, including discrete convolutions, some infinite discrete sums and a composition result. These results are then utilized to find S-asymptotically $\omega$-periodic solutions of first order difference equations, linear and then semi-linear. For the linear case, an application to an equation of the distribution of heat through a thin bar is presented. | en_US |
dc.genre | dissertations | en_US |
dc.identifier | doi:10.13016/m2tuus-5bim | |
dc.identifier.uri | http://hdl.handle.net/11603/17680 | |
dc.language.iso | en_US | en_US |
dc.relation.isAvailableAt | Morgan State University | |
dc.subject | Theoretical mathematics | en_US |
dc.subject | Applied mathematics | en_US |
dc.subject | Theoretical physics | en_US |
dc.title | S-asymptotically ω-periodic Functions and Sequences and Applications to Evolution Equations | en_US |
dc.type | Text | en_US |