Unified learning approach for egocentric hand gesture recognition and fingertip detection

dc.contributor.authorAlam, Mohammad Mahmudul
dc.contributor.authorIslam, Mohammad Tariqul
dc.contributor.authorRahman, S.M. Mahbubur
dc.date.accessioned2021-08-06T17:05:06Z
dc.date.available2021-08-06T17:05:06Z
dc.date.issued2021-07-22
dc.description.abstractHead-mounted device-based human-computer interaction often requires egocentric recognition of hand gestures and fingertips detection. In this paper, a unified approach of egocentric hand gesture recognition and fingertip detection is introduced. The proposed algorithm uses a single convolutional neural network to predict the probabilities of finger class and positions of fingertips in one forward propagation. Instead of directly regressing the positions of fingertips from the fully connected layer, the ensemble of the position of fingertips is regressed from the fully convolutional network. Subsequently, the ensemble average is taken to regress the final position of fingertips. Since the whole pipeline uses a single network, it is significantly fast in computation. Experimental results show that the proposed method outperforms the existing fingertip detection approaches including the Direct Regression and the Heatmap-based framework. The effectiveness of the proposed method is also shown in-the-wild scenario as well as in a use-case of virtual reality.en_US
dc.description.sponsorshipThe authors gratefully acknowledge the support of NVIDIA Corporation for the donation of a Titan Xp GPU that was used in this research. The authors also would like to thank the anonymous reviewers for their valuable comments, which have been useful in improving the quality of the paper.en_US
dc.description.urihttps://www.sciencedirect.com/science/article/abs/pii/S0031320321003824#!en_US
dc.format.extent30 pagesen_US
dc.genrejournal articlesen_US
dc.genrepreprintsen_US
dc.identifierdoi:10.13016/m2shcd-w99e
dc.identifier.citationAlam, Mohammad Mahmudul; Islam, Mohammad Tariqul; Rahman, S.M. Mahbubur; Unified learning approach for egocentric hand gesture recognition and fingertip detection; Pattern Recognition, Volume 121, 108200, 22 July, 2021; https://doi.org/10.1016/j.patcog.2021.108200en_US
dc.identifier.urihttps://doi.org/10.1016/j.patcog.2021.108200
dc.identifier.urihttp://hdl.handle.net/11603/22325
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isAvailableAtThe University of Maryland, Baltimore County (UMBC)
dc.relation.ispartofUMBC Computer Science and Electrical Engineering Department Collection
dc.relation.ispartofUMBC Student Collection
dc.rightsThis item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.titleUnified learning approach for egocentric hand gesture recognition and fingertip detectionen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2101.02047.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.56 KB
Format:
Item-specific license agreed upon to submission
Description: